Based on a simple model, we theoretically show the transport behaviors of two harmonically coupled Brownian particles in an asymmetric saw-tooth potential with two slopes. The coupled particles are subject to stochast...Based on a simple model, we theoretically show the transport behaviors of two harmonically coupled Brownian particles in an asymmetric saw-tooth potential with two slopes. The coupled particles are subject to stochastic fluctuations. It is found that when the equilibrium distance of the coupled particles is between the two slopes of the potential, the transport direction of the coupled particles will be reversed with a certain harmonic coupling strength. This current reversal can be easily understood with the near rigid approximation, where the two coupled particles can be regarded as a single particle in an effective potential. Compared with the original saw-tooth potential, the asymmetry of the effective potential could be reversed when the equilibrium distance is between the two slopes of the original potential, which results in the current reversal.展开更多
The inward particle transport is associated with the formation of peaked density profiles,which contributes to improve the fusion rate and the realization of steady-state discharge.The active control of inward particl...The inward particle transport is associated with the formation of peaked density profiles,which contributes to improve the fusion rate and the realization of steady-state discharge.The active control of inward particle transport is considered as one of the most critical issues of magnetic confinement fusion.Recently,it is realized preliminarily by adding a biased endplate in the Peking University Plasma Test(PPT)device.The results reveal that the inward particle flux increases with the bias voltage of the endplate.It is also found that the profile of radial electric field(Er)shear is flattened by the increased bias voltage.Radial velocity fluctuations affect the inward particle more than density fluctuations,and the frequency of the dominant mode driving inward particle flux increases with the biased voltage applied to the endplate.The experimental results in the PPT device provide a method to actively control the inward particle flux using a biased endplate and enrich the understanding of the relationship between E_(r)×B shear and turbulence transport.展开更多
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a...Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.展开更多
A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A mode...A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.展开更多
The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been appl...The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been applied in measuring velocity of the blown sand particles. This paper reviews the measurement results of several commonly used methods: photoelectric cell method, high-speed photographic method, Particle Dynamics Analyzer (PDA) method and Particle Image Velocimetry (PIV) method. Photoelectric cell method, high-speed photograph method and PDA method are useful in studying the velocity distribution of particles. PIV is a whole-flow-field technique and a useful tool to study the average velocity field in a target area. These methods got some similar results but considerable differences also exist. They have come to similar conclusions on the velocity distributions at a single height but direct measurement results with respect to the velocity distribution very close to the surface are still scarce except some PDA results. The magnitude of measured mean particle velocity differs greatly. The relationship obtained by different methods between mean particle velocity and wind velocity, particle size and possibly other influencing factors also differs considerably. Although several authors have proposed similar power functions to describe the variation with height of the mean particle velocity, the predicted results have wide differences. Each technique is based on some unique principles, and has its advantages and disad- vantages. To make full use of different techniques, a lot of work needs be done to validate them. Developing a reliable technique to measure the velocity of blown particles is still a necessary task in aeolian research.展开更多
A quasi-stationary alternating current (AC) operation assisted by lower hybrid waves (LHW) was achieved recently in HT-7. It is found that the particle confinement time of the positive current plasma is lower than...A quasi-stationary alternating current (AC) operation assisted by lower hybrid waves (LHW) was achieved recently in HT-7. It is found that the particle confinement time of the positive current plasma is lower than that of the negative current plasma. The particle transport coefficients are investigated in AC plasmas by a gas puff modulation method. It is observed that the particle diffusion coefficient for the positive plasma current case is almost the same as that for the negative one, but the absolute value of inward pinch velocity for the positive current plasma is much lower than Vhat of the negative one. The result of the particle transport model study is in agreement with the experimental confinement study. The intensity of Hα emission and impurities emission of CⅢ, OII and OV for the negative current plasma are much lower than that for the positive current plasma. The radiation from Hα, OⅡ, CⅢ and ECE signals from the negative to the positive current phase showed less ionization and lower parameters than those from the positive to the negative one. The difference of particle transport and confinement in AC plasmas is not predicted by the current theory.展开更多
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain...When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.展开更多
The spatiotemporal evolutions of a one-dimensional collisionless decaying plasma bounded by two electrodes with an externally applied electrostatic field are studied by theoretical analyses and particle-in-cell(PIC)si...The spatiotemporal evolutions of a one-dimensional collisionless decaying plasma bounded by two electrodes with an externally applied electrostatic field are studied by theoretical analyses and particle-in-cell(PIC)simulations with the ion extraction process in a laser-induced plasma as the major research background.Based on the theoretical analyses,the transport process of the charged particles including electrons and ions can be divided into three stages:electron oscillation and ion matrix sheath extraction stage,sheath expansion and ion rarefaction wave propagation stage and the plasma collapse stage,and the corresponding criterion for each stage is also presented.Consequently,a complete analytical model is established for describing the ion extraction flux at each stage during the decaying of the laser-induced plasmas under an electrostatic field,which is also validated by the PIC modeling results.Based on this analytical model,influences of the key physical parameters,including the initial electron temperature and number density,plasma width and the externally applied electric voltage,on the ratio of the extracted ions are predicted.The calculated results show that a higher applied electric potential,smaller initial plasma number density and plasma width lead to a higher ratio of the extracted ions during the first stage;while in this stage,the initial electron temperature shows little effect on it.Meanwhile,more ions will be extracted before the plasma collapse once a higher electric potential is applied.The theoretical model presented in this paper is helpful not only for a deep understanding to the charged particle transport mechanisms for a bounded decaying plasma under an applied electrostatic field,but also for an optimization of the ion extraction process in practical applications.展开更多
Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and period...Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.展开更多
A liquid solid semi-moving bed with non-mechanical particle transport system is proposed and used for fractionation of cesium ion in wastewater. The particle transport system, which consists of a suction chamber, a mi...A liquid solid semi-moving bed with non-mechanical particle transport system is proposed and used for fractionation of cesium ion in wastewater. The particle transport system, which consists of a suction chamber, a mixing chamber, a nozzle and a riser tube, is designed to be controlled completely by hydraulic force. Experiments show that continuous feeding and discharging of resin can be realized by the transport system. The removal of cesium ion from wastewater is realized, The concentration of cesium ion in effluent liquid remains below 0,1g·L^-1 (the initial concentration is 5,3g·L^-1) during the 73 hours' experiment. The average exchange capacity of resin discharged from the bed is 0.57mmol,(g dry resin)^-1, which is close to the saturated capacity of 0.65mmol·g^-1. And it is also proved that the non-homogeneity of particle vertical velocity along the radial direction can seriously influence the ion-exchange process.展开更多
The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic...The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic null region.The magnetic null configuration experiment reported here is set up in a linear helicon plasma device,Peking University plasma test device(PPT).The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency(w_(ci))are observed in the separatrix of magnetic null,which are identified as the IBW based on the dispersion relation.Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix.The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order,which shows that IBW may play an important role during 3D reconnection process.展开更多
This paper presents a conceptual design for the first tentative surface muon source based on the proton beam provided by China Spallation Neutron Source (CSNS). We have calcu- lated the optimal parameters of solid m...This paper presents a conceptual design for the first tentative surface muon source based on the proton beam provided by China Spallation Neutron Source (CSNS). We have calcu- lated the optimal parameters of solid muon target, in which the method of Monte Carlo simula- tion is used to obtain the optimal muon beam parameters, such as beam fiuence rate, momentum spread and phase space distribution. A simple muon transport beamline system was also designed, which could transport the muons emitted from the muon target into the experimental area, where positrons from muon decay in a test sample are detected by a spectrometer. The beam optics of this new beam line is also described.展开更多
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod...Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.展开更多
The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The...The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The radial transport behaviours of carbon impurities at different central line averaged electron densities ne are investigated in ohmic discharges. The diffusion coefficient Dk(r), the convection velocity Wk(r) and the total flux of the impurity ions Fk decrease with the increase of ne, which shows a reduction in the impurity particle transport at higher electron densities.展开更多
An analytical algorithm for fast calculation of the Abel inversion for density profile measurement in tokamak is developed. Based upon the assumptions that the particle source is negligibly small in the plasma core re...An analytical algorithm for fast calculation of the Abel inversion for density profile measurement in tokamak is developed. Based upon the assumptions that the particle source is negligibly small in the plasma core region, density profiles can be approximated by an asymmetrical Gaussian distribution controlled only by one parameter VoID and VoID is constant along the radial direction, the analytical algorithm is presented and examined against a testing profile. The validity is confirmed by benchmark with the standard Abel inversion method and the theoretical profile. The scope of application as well as the error analysis is also discussed in detail.展开更多
Helimak is an experimental approximation to the ideal cylindrical slab, a onedimensional magnetized plasma with magnetic curvature and shear. The Texas Helimak realizes this approximation to a large degree; the finite...Helimak is an experimental approximation to the ideal cylindrical slab, a onedimensional magnetized plasma with magnetic curvature and shear. The Texas Helimak realizes this approximation to a large degree; the finite size of the device can be neglected for many phenomena. Specifically, the drift-wave turbulence characteristic of a slab is observed with scale lengths small compared with the device size. The device and the general features of its behavior are described here. The device is capable of studying drift-wave turbulence, scrape-off layer (SOL) turbulence, and the stabilization of turbulence by imposing velocity shear.展开更多
Tokamak plasma density evolution is generally modeled by a diffusion-convection equation in cylindrical geometry. By using a semi-analytical approach, we solve such an equation for a given diffusion coefficient and in...Tokamak plasma density evolution is generally modeled by a diffusion-convection equation in cylindrical geometry. By using a semi-analytical approach, we solve such an equation for a given diffusion coefficient and inward convection velocity as an arbitrary function of the radial position. Through variable separation, a Sturm-Liouville-type eigenvalue problem is solved, thereby constructing a complete set of orthogonal eigenfunctions. Based on the decomposition of the solution, the initial function, and the source function in these eigenfunctions, several problems of practical interest about the density evolution are analyzed. They include the density evolution, with boundary density not being zero; the density profile with internal transport barrier; the damping profile during particle source being shut-down. Results are found to be qualitatively consistent with the tokamak experiments.展开更多
The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The ...The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The density modulation amplitude was 10% of the central chord averaged background density and the modulation frequency was 10 Hz in the experiments. The particle diffusion coefficient (D) and the convection velocity (V) were obtained for different background plasmas with the central chord averaged density 〈ne〉 = 1.5×10^19m^-3 and 3.0×10^19 m^-3 respectively. It was observed that the influence of density modulation on the main plasma parameters was very weak. This technology is expected to be useful for the analysis of LHW and IBW heated plasmas on HT-7 tokamak in the near future.展开更多
Nonlinear magnetohydrodynamic(MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations(RMPs) are performed with NIMROD(non-ideal MHD with rotation,open discussion).Nu...Nonlinear magnetohydrodynamic(MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations(RMPs) are performed with NIMROD(non-ideal MHD with rotation,open discussion).Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology,plasma density and rotation profile.The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling,and finally change density profile by particle transport.At the same time,plasma rotation plays an important role during the entire evolution process.展开更多
Three spectroscopic systems have been developed for the study of light impurity particle transport in the HT-7 tokamak. A visible multi-channel spectroscopic system (VIS) is used to obtain the brightness distributio...Three spectroscopic systems have been developed for the study of light impurity particle transport in the HT-7 tokamak. A visible multi-channel spectroscopic system (VIS) is used to obtain the brightness distribution of the line emission from ionized light impurities. The profile of Zeff(r) has been obtained from the visible multi-channel bremsstrahlung measurement (VB). The system with a rotating hexahedral mirror for space-time resolved spectroscopy measurement from ultraviolet to visible (UV) can provide the brightness distribution of two different emission lines of the light impurities simultaneously. The emissivities by these multi-channel measurements can be obtained by Abel inversion. The measurement was performed in typical OH discharges in the HT-7 tokamak. The carbon particle transport was analyzed. The feasibility of these diagnostic systems for the impurity particle transport study is clearly demonstrated.展开更多
基金Supported the National Natural Science Foundation of China under Grant Nos 11175230 and 11474299the Key Research Program of Chinese Academy of Sciences under Grant No KJZD-EW-M03
文摘Based on a simple model, we theoretically show the transport behaviors of two harmonically coupled Brownian particles in an asymmetric saw-tooth potential with two slopes. The coupled particles are subject to stochastic fluctuations. It is found that when the equilibrium distance of the coupled particles is between the two slopes of the potential, the transport direction of the coupled particles will be reversed with a certain harmonic coupling strength. This current reversal can be easily understood with the near rigid approximation, where the two coupled particles can be regarded as a single particle in an effective potential. Compared with the original saw-tooth potential, the asymmetry of the effective potential could be reversed when the equilibrium distance is between the two slopes of the original potential, which results in the current reversal.
基金supported by the National MCF Energy R&D Program of China(No.2018YFE0303100)National Natural Science Foundation of China(No.11975038)。
文摘The inward particle transport is associated with the formation of peaked density profiles,which contributes to improve the fusion rate and the realization of steady-state discharge.The active control of inward particle transport is considered as one of the most critical issues of magnetic confinement fusion.Recently,it is realized preliminarily by adding a biased endplate in the Peking University Plasma Test(PPT)device.The results reveal that the inward particle flux increases with the bias voltage of the endplate.It is also found that the profile of radial electric field(Er)shear is flattened by the increased bias voltage.Radial velocity fluctuations affect the inward particle more than density fluctuations,and the frequency of the dominant mode driving inward particle flux increases with the biased voltage applied to the endplate.The experimental results in the PPT device provide a method to actively control the inward particle flux using a biased endplate and enrich the understanding of the relationship between E_(r)×B shear and turbulence transport.
基金the National Natural Science Foun-dation of China(Grant Nos.12020101005,11975067,and 12347131)the Fundamental Research Funds for the Cen-tral Universities(Grant No.DUT24BS069).
文摘Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.
文摘A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.
基金the funding from National Science Fund for Distinguished Young Scholars of the NaturalScience Foundation of China (40225003)the Knowledge Innovation Project of the Chinese Academy of Science(KZCX3-SW-341)
文摘The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been applied in measuring velocity of the blown sand particles. This paper reviews the measurement results of several commonly used methods: photoelectric cell method, high-speed photographic method, Particle Dynamics Analyzer (PDA) method and Particle Image Velocimetry (PIV) method. Photoelectric cell method, high-speed photograph method and PDA method are useful in studying the velocity distribution of particles. PIV is a whole-flow-field technique and a useful tool to study the average velocity field in a target area. These methods got some similar results but considerable differences also exist. They have come to similar conclusions on the velocity distributions at a single height but direct measurement results with respect to the velocity distribution very close to the surface are still scarce except some PDA results. The magnitude of measured mean particle velocity differs greatly. The relationship obtained by different methods between mean particle velocity and wind velocity, particle size and possibly other influencing factors also differs considerably. Although several authors have proposed similar power functions to describe the variation with height of the mean particle velocity, the predicted results have wide differences. Each technique is based on some unique principles, and has its advantages and disad- vantages. To make full use of different techniques, a lot of work needs be done to validate them. Developing a reliable technique to measure the velocity of blown particles is still a necessary task in aeolian research.
基金National Natural Science Foundation of China (No.10675125)the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘A quasi-stationary alternating current (AC) operation assisted by lower hybrid waves (LHW) was achieved recently in HT-7. It is found that the particle confinement time of the positive current plasma is lower than that of the negative current plasma. The particle transport coefficients are investigated in AC plasmas by a gas puff modulation method. It is observed that the particle diffusion coefficient for the positive plasma current case is almost the same as that for the negative one, but the absolute value of inward pinch velocity for the positive current plasma is much lower than Vhat of the negative one. The result of the particle transport model study is in agreement with the experimental confinement study. The intensity of Hα emission and impurities emission of CⅢ, OII and OV for the negative current plasma are much lower than that for the positive current plasma. The radiation from Hα, OⅡ, CⅢ and ECE signals from the negative to the positive current phase showed less ionization and lower parameters than those from the positive to the negative one. The difference of particle transport and confinement in AC plasmas is not predicted by the current theory.
基金supported by the CAEP Found (No.CX20200028)Youth Program of National Natural Science Foundation of China (No.11705011).
文摘When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.
基金the National Natural Science Foundation of China(Grant No.11775128)。
文摘The spatiotemporal evolutions of a one-dimensional collisionless decaying plasma bounded by two electrodes with an externally applied electrostatic field are studied by theoretical analyses and particle-in-cell(PIC)simulations with the ion extraction process in a laser-induced plasma as the major research background.Based on the theoretical analyses,the transport process of the charged particles including electrons and ions can be divided into three stages:electron oscillation and ion matrix sheath extraction stage,sheath expansion and ion rarefaction wave propagation stage and the plasma collapse stage,and the corresponding criterion for each stage is also presented.Consequently,a complete analytical model is established for describing the ion extraction flux at each stage during the decaying of the laser-induced plasmas under an electrostatic field,which is also validated by the PIC modeling results.Based on this analytical model,influences of the key physical parameters,including the initial electron temperature and number density,plasma width and the externally applied electric voltage,on the ratio of the extracted ions are predicted.The calculated results show that a higher applied electric potential,smaller initial plasma number density and plasma width lead to a higher ratio of the extracted ions during the first stage;while in this stage,the initial electron temperature shows little effect on it.Meanwhile,more ions will be extracted before the plasma collapse once a higher electric potential is applied.The theoretical model presented in this paper is helpful not only for a deep understanding to the charged particle transport mechanisms for a bounded decaying plasma under an applied electrostatic field,but also for an optimization of the ion extraction process in practical applications.
基金supported by the National Natural Science Foundation of China(Grant No.50875081)China Postdoctoral Science Foundation(Grant No.20080440992)+1 种基金the Planned Science and Technology Support Project of Hunan Province(Grant No.2009SK3159)Graduate Innovation Fund of Hunan University of Science and Technology(Grant No.S100109)
文摘Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.
基金the National High Technology Research and Development Program of China(863 Program,No.2004AA518020).
文摘A liquid solid semi-moving bed with non-mechanical particle transport system is proposed and used for fractionation of cesium ion in wastewater. The particle transport system, which consists of a suction chamber, a mixing chamber, a nozzle and a riser tube, is designed to be controlled completely by hydraulic force. Experiments show that continuous feeding and discharging of resin can be realized by the transport system. The removal of cesium ion from wastewater is realized, The concentration of cesium ion in effluent liquid remains below 0,1g·L^-1 (the initial concentration is 5,3g·L^-1) during the 73 hours' experiment. The average exchange capacity of resin discharged from the bed is 0.57mmol,(g dry resin)^-1, which is close to the saturated capacity of 0.65mmol·g^-1. And it is also proved that the non-homogeneity of particle vertical velocity along the radial direction can seriously influence the ion-exchange process.
基金supported by National Natural Science Foundation of China(No.11975038)the National MCF Energy R&D Program of China(Nos.2017YFE0300601 and 2018YFE0311400).
文摘The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic null region.The magnetic null configuration experiment reported here is set up in a linear helicon plasma device,Peking University plasma test device(PPT).The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency(w_(ci))are observed in the separatrix of magnetic null,which are identified as the IBW based on the dispersion relation.Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix.The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order,which shows that IBW may play an important role during 3D reconnection process.
基金supported by National Natural Science Foundation of China (No. 11075154)
文摘This paper presents a conceptual design for the first tentative surface muon source based on the proton beam provided by China Spallation Neutron Source (CSNS). We have calcu- lated the optimal parameters of solid muon target, in which the method of Monte Carlo simula- tion is used to obtain the optimal muon beam parameters, such as beam fiuence rate, momentum spread and phase space distribution. A simple muon transport beamline system was also designed, which could transport the muons emitted from the muon target into the experimental area, where positrons from muon decay in a test sample are detected by a spectrometer. The beam optics of this new beam line is also described.
基金Supported by the National Basic Research Program of China(2014CB745100)the National Natural Science Foundation of China(21576197)+1 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06700)Tianjin Penglai 19-3 Oil Spill Accident Compensation Project(19-3 BC2014-03)
文摘Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.
基金Project supported by the National Natural Science Foundation of China (Grant No 10235010).
文摘The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The radial transport behaviours of carbon impurities at different central line averaged electron densities ne are investigated in ohmic discharges. The diffusion coefficient Dk(r), the convection velocity Wk(r) and the total flux of the impurity ions Fk decrease with the increase of ne, which shows a reduction in the impurity particle transport at higher electron densities.
基金supported by the National Natural Science Foundation of China (No. 10235010) the special fund for scientific research startup to the winner of the Chinese Academy of Sciences President Award. As well as in part by JSPS-CAS Core-University Program on Plasma and Nuclear Fusion
文摘An analytical algorithm for fast calculation of the Abel inversion for density profile measurement in tokamak is developed. Based upon the assumptions that the particle source is negligibly small in the plasma core region, density profiles can be approximated by an asymmetrical Gaussian distribution controlled only by one parameter VoID and VoID is constant along the radial direction, the analytical algorithm is presented and examined against a testing profile. The validity is confirmed by benchmark with the standard Abel inversion method and the theoretical profile. The scope of application as well as the error analysis is also discussed in detail.
文摘Helimak is an experimental approximation to the ideal cylindrical slab, a onedimensional magnetized plasma with magnetic curvature and shear. The Texas Helimak realizes this approximation to a large degree; the finite size of the device can be neglected for many phenomena. Specifically, the drift-wave turbulence characteristic of a slab is observed with scale lengths small compared with the device size. The device and the general features of its behavior are described here. The device is capable of studying drift-wave turbulence, scrape-off layer (SOL) turbulence, and the stabilization of turbulence by imposing velocity shear.
文摘Tokamak plasma density evolution is generally modeled by a diffusion-convection equation in cylindrical geometry. By using a semi-analytical approach, we solve such an equation for a given diffusion coefficient and inward convection velocity as an arbitrary function of the radial position. Through variable separation, a Sturm-Liouville-type eigenvalue problem is solved, thereby constructing a complete set of orthogonal eigenfunctions. Based on the decomposition of the solution, the initial function, and the source function in these eigenfunctions, several problems of practical interest about the density evolution are analyzed. They include the density evolution, with boundary density not being zero; the density profile with internal transport barrier; the damping profile during particle source being shut-down. Results are found to be qualitatively consistent with the tokamak experiments.
基金supported partly by Japanese Society of Promotion of Science and Chinese Academy of Sciences Core-University Program on Plasma and Nuclear Fusion in 2004
文摘The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The density modulation amplitude was 10% of the central chord averaged background density and the modulation frequency was 10 Hz in the experiments. The particle diffusion coefficient (D) and the convection velocity (V) were obtained for different background plasmas with the central chord averaged density 〈ne〉 = 1.5×10^19m^-3 and 3.0×10^19 m^-3 respectively. It was observed that the influence of density modulation on the main plasma parameters was very weak. This technology is expected to be useful for the analysis of LHW and IBW heated plasmas on HT-7 tokamak in the near future.
基金supported by the National Magnetic Confinement Fusion Science Programs(No.2015GB104004 and No.2015GB111002)partially supported by National Natural Science Foundation of China(No.11575068)
文摘Nonlinear magnetohydrodynamic(MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations(RMPs) are performed with NIMROD(non-ideal MHD with rotation,open discussion).Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology,plasma density and rotation profile.The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling,and finally change density profile by particle transport.At the same time,plasma rotation plays an important role during the entire evolution process.
基金the National Natural Science Foundation of China(No.10235010)
文摘Three spectroscopic systems have been developed for the study of light impurity particle transport in the HT-7 tokamak. A visible multi-channel spectroscopic system (VIS) is used to obtain the brightness distribution of the line emission from ionized light impurities. The profile of Zeff(r) has been obtained from the visible multi-channel bremsstrahlung measurement (VB). The system with a rotating hexahedral mirror for space-time resolved spectroscopy measurement from ultraviolet to visible (UV) can provide the brightness distribution of two different emission lines of the light impurities simultaneously. The emissivities by these multi-channel measurements can be obtained by Abel inversion. The measurement was performed in typical OH discharges in the HT-7 tokamak. The carbon particle transport was analyzed. The feasibility of these diagnostic systems for the impurity particle transport study is clearly demonstrated.