The Standard Model of particle physics does not account for charged fermion mass values and neutrino mass, or explain why only three particles are in each charge state 0, -e/3, 2e/3, and -e. These issues are addressed...The Standard Model of particle physics does not account for charged fermion mass values and neutrino mass, or explain why only three particles are in each charge state 0, -e/3, 2e/3, and -e. These issues are addressed by treating Standard Model particles with mass m as spheres with diameter equal to their Compton wavelength l =ħ/mc, where ħis Planck’s constant and c the speed of light, and any charge in diametrically opposed pairs ±ne/6 with n = 1, 2, or 3 at the axis of rotation on the sphere surface. Particles are ground state solutions of quantized Friedmann equations from general relativity, with differing internal gravitational constants. Energy distribution within particles identifies Standard Model particles with spheres containing central black holes with mass m, and particle spin resulting from black hole angular momentum. In each charge state, energy distribution within particles satisfies a cubic equation in l, allowing only three particles in the charge state and requiring neutrino mass. Cosmic vacuum energy density is a lower limit on energy density of systems in the universe, and setting electron neutrino average energy density equal to cosmic vacuum energy density predicts neutrino masses consistent with experiment. Relations between charged fermion wavelength solutions to cubic equations in different charge states determine charged fermion masses relative to electron mass as a consequence of charge neutrality of the universe. An appendix shows assigning charge ±e/6 to bits of information on the event horizon available for holographic description of physics in the observable universe accounts for dominance of matter over anti-matter. The analysis explains why only three Standard Models are in each charge state and predicts neutrino masses based on cosmic vacuum energy density as a lower bound on neutrino energy density.展开更多
Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculat...Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.展开更多
One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of space-time, what matter is and how matter interacts. There are various propositions, as Grand Unified Th...One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of space-time, what matter is and how matter interacts. There are various propositions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Superstring Theories, and M-Theory. However, none of them is able to consistently explain at the present and same time electromagnetism, relativity, gravitation, quantum physics and observed elementary particles. In this paper, one summarizes the content of a new book, published in English [2] and in French [3], in which it is suggested that Universe could be a massive elastic 3D-lattice, and that fundamental building blocks of Ordinary Matter could consist of topological singularities of this lattice, namely diverse dislocation loops and disclination loops. For an isotropic elastic lattice obeying Newton’s law, with specific assumptions on its elastic properties, one obtains the result that the behaviours of this lattice and of its topological defects display “all” known physics, unifying electromagnetism, relativity, gravitation and quantum physics, and resolving some longstanding questions of modern cosmology. Moreover, studying lattices with axial symmetries, represented by “colored” cubic 3D-lattices, one has identified a lattice structure whose topological defect loops coincide with the complex zoology of elementary particles, which could open a very promising field of research. Here, only main steps and principal results of the new theory are presented and discussed, without showing the mathematical concepts and developments contained in the book.展开更多
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag character...In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.展开更多
The parton and hadron cascade model PACIAE is used to investigate strange particle production in Au + Au collisions at √s = 62.4 GeV in different centralities and at √s =39, 11.5 and 7.7 GeV in the most central col...The parton and hadron cascade model PACIAE is used to investigate strange particle production in Au + Au collisions at √s = 62.4 GeV in different centralities and at √s =39, 11.5 and 7.7 GeV in the most central collision, respectively. It is shown that the transverse momentum distributions of strange particles by the PACIAE model fit the RHIC Beam Energy Scan experimental results well.展开更多
文摘The Standard Model of particle physics does not account for charged fermion mass values and neutrino mass, or explain why only three particles are in each charge state 0, -e/3, 2e/3, and -e. These issues are addressed by treating Standard Model particles with mass m as spheres with diameter equal to their Compton wavelength l =ħ/mc, where ħis Planck’s constant and c the speed of light, and any charge in diametrically opposed pairs ±ne/6 with n = 1, 2, or 3 at the axis of rotation on the sphere surface. Particles are ground state solutions of quantized Friedmann equations from general relativity, with differing internal gravitational constants. Energy distribution within particles identifies Standard Model particles with spheres containing central black holes with mass m, and particle spin resulting from black hole angular momentum. In each charge state, energy distribution within particles satisfies a cubic equation in l, allowing only three particles in the charge state and requiring neutrino mass. Cosmic vacuum energy density is a lower limit on energy density of systems in the universe, and setting electron neutrino average energy density equal to cosmic vacuum energy density predicts neutrino masses consistent with experiment. Relations between charged fermion wavelength solutions to cubic equations in different charge states determine charged fermion masses relative to electron mass as a consequence of charge neutrality of the universe. An appendix shows assigning charge ±e/6 to bits of information on the event horizon available for holographic description of physics in the observable universe accounts for dominance of matter over anti-matter. The analysis explains why only three Standard Models are in each charge state and predicts neutrino masses based on cosmic vacuum energy density as a lower bound on neutrino energy density.
基金Project(51174032)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0225)supported by the Program for New Century Excellent Talents in University,ChinaProject(FRF-TP-09-001A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.
文摘One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of space-time, what matter is and how matter interacts. There are various propositions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Superstring Theories, and M-Theory. However, none of them is able to consistently explain at the present and same time electromagnetism, relativity, gravitation, quantum physics and observed elementary particles. In this paper, one summarizes the content of a new book, published in English [2] and in French [3], in which it is suggested that Universe could be a massive elastic 3D-lattice, and that fundamental building blocks of Ordinary Matter could consist of topological singularities of this lattice, namely diverse dislocation loops and disclination loops. For an isotropic elastic lattice obeying Newton’s law, with specific assumptions on its elastic properties, one obtains the result that the behaviours of this lattice and of its topological defects display “all” known physics, unifying electromagnetism, relativity, gravitation and quantum physics, and resolving some longstanding questions of modern cosmology. Moreover, studying lattices with axial symmetries, represented by “colored” cubic 3D-lattices, one has identified a lattice structure whose topological defect loops coincide with the complex zoology of elementary particles, which could open a very promising field of research. Here, only main steps and principal results of the new theory are presented and discussed, without showing the mathematical concepts and developments contained in the book.
基金supports from the State Key Development Program for Basic Research of China(973 Program)under Grant Nos.2009CB219904,2013CB632603the National Science and Technology Support Program of Ministry of Science and Technology of the People's Republic of China(Grant No. 2012BAB14B03)
文摘In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.
基金Supported by National Natural Science Foundation of China(11475068,11247021)Excellent Youth Foundation of Hubei Scientific Committee(2006ABB036)Key Laboratory foundation of Quark and Lepton Physics(Hua-Zhong Normal University)(QLPL2014P01)
文摘The parton and hadron cascade model PACIAE is used to investigate strange particle production in Au + Au collisions at √s = 62.4 GeV in different centralities and at √s =39, 11.5 and 7.7 GeV in the most central collision, respectively. It is shown that the transverse momentum distributions of strange particles by the PACIAE model fit the RHIC Beam Energy Scan experimental results well.