The effects of superficial gas velocity and mechanical stirring speed on the precise regulation of flow regimes for cohesive SiO2 powders(mean diameter is 16μm)were experimentally investigated in a stirring-assisted ...The effects of superficial gas velocity and mechanical stirring speed on the precise regulation of flow regimes for cohesive SiO2 powders(mean diameter is 16μm)were experimentally investigated in a stirring-assisted fluidized bed.The results showed that compared with the agglomerates formed in the non-assisted fluidization of cohesive SiO2 powders,the introduction of mechanical stirring could effectively reduce the size of agglomerates and well disperse the agglomerates during fluidization.The best regulation range of agglomerate particulate fluidization can be achieved at 600 rpm when agglomerate sizes were reduced to below 200μm.Further investigation based on the operational phase diagram revealed that transformations of flow regimes were dominated by both stirring speed and gas velocity.The stirring applied enlarges the operational range of agglomerate particulate fluidization(APF)with a delayed onset of bubbling for cohesive particles.However,the exorbitant speed increases the collision velocity and contact area between small agglomerates,which results in the formation of unstable agglomerates and the whirlpool of powder.展开更多
Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting...Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.展开更多
基金The authors are grateful to the support by the National Natural Science Foundation of China(Grant Nos.21908227,21736010 and 22178363).
文摘The effects of superficial gas velocity and mechanical stirring speed on the precise regulation of flow regimes for cohesive SiO2 powders(mean diameter is 16μm)were experimentally investigated in a stirring-assisted fluidized bed.The results showed that compared with the agglomerates formed in the non-assisted fluidization of cohesive SiO2 powders,the introduction of mechanical stirring could effectively reduce the size of agglomerates and well disperse the agglomerates during fluidization.The best regulation range of agglomerate particulate fluidization can be achieved at 600 rpm when agglomerate sizes were reduced to below 200μm.Further investigation based on the operational phase diagram revealed that transformations of flow regimes were dominated by both stirring speed and gas velocity.The stirring applied enlarges the operational range of agglomerate particulate fluidization(APF)with a delayed onset of bubbling for cohesive particles.However,the exorbitant speed increases the collision velocity and contact area between small agglomerates,which results in the formation of unstable agglomerates and the whirlpool of powder.
文摘Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.