Particulate matter (PM} in the Kunshan High-Tech zone is studied during a three-month campaign. PM and trace elements are measured by the online pollution monitoring, forecast-warning and source term retrieval system...Particulate matter (PM} in the Kunshan High-Tech zone is studied during a three-month campaign. PM and trace elements are measured by the online pollution monitoring, forecast-warning and source term retrieval system AS3. Hourly measured concentrations of PM10, PM2.5 and 16 trace elements in the PM2.5 section (Ca, Pb, Cu, C1, V, Cr, Fe, Ti, Mn, Ni, Zn, Ga, As, Se, Sr, Ba) are focused. Source apportionment of trace elements by Positive Matrix Factorization modeling indicates that there are five major sources, including dust, industrial processing, traffic, combustion, and sea salt with contribution rate of 23.68%, 21.66%, 14.30%, 22.03%, and 6.89%, respectively. Prediction ofptume dispersion from concrete plant and traffic emissions shows that PM20 pollution of concrete plant is three orders of magnitude more than that of the traffic. The influence range can extend to more than 3 km in 1 hr. Because the footprint of the industrial plumes is constantly moving according to the local meteorological conditions, the fixed monitoring sites scattered in a few hundred meters haven't captured the heaviest pollution plume at the local scale of a few km2. As a more intensive monitoring network is not operationally possible, the use of online modeling gives accurate and quantitative information of plume location, which increases the spatial pollution monitoring capacity and improves the understanding of measurement data. These results indicate that the development of the AS3 system, which combines monitoring equipment and air pollution modeling systems, is beneficial to the real-time pollution monitoring in the industrial zone.展开更多
To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 ...To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province--an area called Jing-Jin-Ji (JJJ, hereinafter)-in December 2013-16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m^-3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013-16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.展开更多
Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,...Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,sources,and influential factors of atmospheric particulate matter and its water-soluble ion concentrations is not sufficient.Thus,the major water-soluble ion concentrations,sources,and influential factors of atmospheric particles PM_(2.5) and PM_(10)(particulate matter with an aerodynamic equivalent diameter≤2.5 and 10.0μm,respectively,in ambient air)were collected from Cave 16 and its ambient exterior environment in the Dunhuang Mogao Grottoes,China,between April 2015 and March 2016.Results showed that the concentrations of PM_(2.5) and PM_(10) inside and outside the cave were the highest in March 2016 and the lowest in December 2015.The higher particle concentration from March to May was related to the frequent occurrence of sand and dust events,and the lower particle concentration from June to September was associated with good diffusion conditions,increased precipitation,and an established cave shelterbelt.The concentration of particulate matter inside the cave was affected by the concentration of particles in the air outside the cave.Ca2+,NH+4,Na+,Cl-,and SO2-4were the main components of the total ions of PM_(2.5) and PM_(10) both inside and outside the cave.The total ions inside the cave were frequently affected by the disturbance of tourists'activities during the peak tourist season from May to August.Under the influence of dust,the total concentrations of Cl-,SO2-4,Na+,NH+4,and Ca2+in particles of different sizes inside and outside the cave increased,and the concentrations of Cl-,SO2-4,Na+,and Ca2+decreased during precipitation period.Backward air mass trajectory analysis suggested that the pollutants were mainly from Xinjiang,China.The pollutant sources of air particulates are straw burning,secondary pollution sources,soil dust,dry spring rivers,and tourist activities.展开更多
O3 and PM2.5 were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated usin...O3 and PM2.5 were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors (SO2, NO2, O3, CO, PM2.5 and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2 and PMlo were observed in 26 cities, and the pollutants O3, CO and PM2.5 were measured in 15 of the 26 cities. The concentrations of SO2 and CO were much higher in the cities in north China than those in the south. As for O3 and NO2, however, there was no significant difference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5 to PMI0 ranging from 55% to 77%. The concentrations of PM2.5 (57.5 μg/m3) and PMlo (91.2 μg/m3) were much higher than the values (PM2.5:11.2μg/m3; PMI0:35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more efforts will to be taken to control air pollution in China.展开更多
Beijing suffered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutant...Beijing suffered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutants, physical and chemical properties of single particles, and the profile of water-soluble ions in PM2.5 during the three episodes. Regional and photochemically aged air masses, which were characterized as having high values of O3 and SO2, were hypothesized to have played a dominant role in the first episode. After mixing local air masses with freshly-emitted primary pollutants, the concentration of NOx continued to increase and the size of SO42-, NO3- and NH4+ in the particle population continued to become smaller. The amount of elemental carbon-rich and organic carbonrich particles in the scaled single particles (0.2-2 μm) and water-soluble K+ in PM2.s also increased in the episodes. All the available information suggests that the biomass or fuel burning sources in or around Beijing may have had a huge impact on the last two episodes.展开更多
Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed b...Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.s and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B tung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.s. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.展开更多
Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time re...Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 itg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.展开更多
This observational study investigates the variation of PM2.5 concentration and its ratio against PM10 concentration under different weather systems and pollution types. The study was conducted in Hangzhou on east Chin...This observational study investigates the variation of PM2.5 concentration and its ratio against PM10 concentration under different weather systems and pollution types. The study was conducted in Hangzhou on east China's Yangtze River Delta using data collected at seven ambient air quality monitoring stations around the metropolitan area between 2006 and 2008 and using weather information in the same period. Nine predominant weather systems affecting the city were classified through careful analysis of the 11- year surface and upper air weather charts from 1996 to 2006. Each observational day was then assigned to one of the nine weather systems. It was found that the PM2.5 concentration varied greatly for different weather systems, with the highest PM2.5 concentration associated with the post-cold-frontal system at 0.091 mg/m^3 and the lowest PM2.5 concentration with the easterlies system at 0.038 mg/m^3, although the PM2.5/PM10 ratio remained consistently above 0.5 for all systems. The post-cold-frontal system typically occurs in autumn and winter while the easterlies system is more a summer phenomenon. Among all types of pollution, the highest PM2.5 concentration of 0.117 mg/m^3 coincided with the large-scale continuous pollution events, suggesting that this type of pollution was more conducive to the formation of secondary particulate matters. The ratio of PM2.5/PM10 was above 0.5 in non-pollution days and all pollution types but one under the influence of dust storms when the ratio decreased to 0.3 or less. The outcomes of this study could be used to develop a rudimental predictive model of PM2.5 concentration based on weather system and pollution type.展开更多
基金supported by the Ministry of Science and Technology of China under grant number 2014DFG92630by BPIFrance of France under grant number A1305005Z
文摘Particulate matter (PM} in the Kunshan High-Tech zone is studied during a three-month campaign. PM and trace elements are measured by the online pollution monitoring, forecast-warning and source term retrieval system AS3. Hourly measured concentrations of PM10, PM2.5 and 16 trace elements in the PM2.5 section (Ca, Pb, Cu, C1, V, Cr, Fe, Ti, Mn, Ni, Zn, Ga, As, Se, Sr, Ba) are focused. Source apportionment of trace elements by Positive Matrix Factorization modeling indicates that there are five major sources, including dust, industrial processing, traffic, combustion, and sea salt with contribution rate of 23.68%, 21.66%, 14.30%, 22.03%, and 6.89%, respectively. Prediction ofptume dispersion from concrete plant and traffic emissions shows that PM20 pollution of concrete plant is three orders of magnitude more than that of the traffic. The influence range can extend to more than 3 km in 1 hr. Because the footprint of the industrial plumes is constantly moving according to the local meteorological conditions, the fixed monitoring sites scattered in a few hundred meters haven't captured the heaviest pollution plume at the local scale of a few km2. As a more intensive monitoring network is not operationally possible, the use of online modeling gives accurate and quantitative information of plume location, which increases the spatial pollution monitoring capacity and improves the understanding of measurement data. These results indicate that the development of the AS3 system, which combines monitoring equipment and air pollution modeling systems, is beneficial to the real-time pollution monitoring in the industrial zone.
基金Supported by the National Natural Science Foundation of China(91544232 and 51305112)Chinese Academy of Meteorological Sciences Basic Research Project(2017Y001)National Science and Technology Support Program of China(2014BAC16B03 and2014BAC23B01)
文摘To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province--an area called Jing-Jin-Ji (JJJ, hereinafter)-in December 2013-16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m^-3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013-16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.
基金supported by the National Natural Science Foundation of China(51962001,32260292)the National Key Research&Development Projects(2020YFC1522200)the Gansu Provincial Science and Technology Plan Project(20JR5RA051,21YF1FF371).
文摘Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,sources,and influential factors of atmospheric particulate matter and its water-soluble ion concentrations is not sufficient.Thus,the major water-soluble ion concentrations,sources,and influential factors of atmospheric particles PM_(2.5) and PM_(10)(particulate matter with an aerodynamic equivalent diameter≤2.5 and 10.0μm,respectively,in ambient air)were collected from Cave 16 and its ambient exterior environment in the Dunhuang Mogao Grottoes,China,between April 2015 and March 2016.Results showed that the concentrations of PM_(2.5) and PM_(10) inside and outside the cave were the highest in March 2016 and the lowest in December 2015.The higher particle concentration from March to May was related to the frequent occurrence of sand and dust events,and the lower particle concentration from June to September was associated with good diffusion conditions,increased precipitation,and an established cave shelterbelt.The concentration of particulate matter inside the cave was affected by the concentration of particles in the air outside the cave.Ca2+,NH+4,Na+,Cl-,and SO2-4were the main components of the total ions of PM_(2.5) and PM_(10) both inside and outside the cave.The total ions inside the cave were frequently affected by the disturbance of tourists'activities during the peak tourist season from May to August.Under the influence of dust,the total concentrations of Cl-,SO2-4,Na+,NH+4,and Ca2+in particles of different sizes inside and outside the cave increased,and the concentrations of Cl-,SO2-4,Na+,and Ca2+decreased during precipitation period.Backward air mass trajectory analysis suggested that the pollutants were mainly from Xinjiang,China.The pollutant sources of air particulates are straw burning,secondary pollution sources,soil dust,dry spring rivers,and tourist activities.
基金supported by the National Natural Scientific Foundation of China(No.41005065,41375132)the National Department Public Benefit Research Foundation(Ministry of Environmental Protection of the People’s Republic of China(No.201009001,201409003,201309011)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB05030400)
文摘O3 and PM2.5 were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors (SO2, NO2, O3, CO, PM2.5 and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2 and PMlo were observed in 26 cities, and the pollutants O3, CO and PM2.5 were measured in 15 of the 26 cities. The concentrations of SO2 and CO were much higher in the cities in north China than those in the south. As for O3 and NO2, however, there was no significant difference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5 to PMI0 ranging from 55% to 77%. The concentrations of PM2.5 (57.5 μg/m3) and PMlo (91.2 μg/m3) were much higher than the values (PM2.5:11.2μg/m3; PMI0:35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more efforts will to be taken to control air pollution in China.
基金supported by the National Natural Scientific Foundation of China(No.41005065,41375132)the National Department Public Benefit Research Foundation(No.201409003,201009001,201309011)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB05030400)
文摘Beijing suffered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutants, physical and chemical properties of single particles, and the profile of water-soluble ions in PM2.5 during the three episodes. Regional and photochemically aged air masses, which were characterized as having high values of O3 and SO2, were hypothesized to have played a dominant role in the first episode. After mixing local air masses with freshly-emitted primary pollutants, the concentration of NOx continued to increase and the size of SO42-, NO3- and NH4+ in the particle population continued to become smaller. The amount of elemental carbon-rich and organic carbonrich particles in the scaled single particles (0.2-2 μm) and water-soluble K+ in PM2.s also increased in the episodes. All the available information suggests that the biomass or fuel burning sources in or around Beijing may have had a huge impact on the last two episodes.
基金supported by the Institut National du Cancer (INCa Convention no. 2010-368)+2 种基金the Hauts-de-France Region (Convention No. 14003399)the French Agency of the Environment and Energy (ADEME Convention no. 1494c008283-84)
文摘Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.s and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B tung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.s. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.
基金supported by the National Natural Science Foundation of China (No. 20307005)the Technological Project of Gansu (No. 0804GKCA029)Gansu Province science and technology research funded projects (No. 2GS057-A52-001-02)
文摘Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 itg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.
基金funded by the Hangzhou Key Sci_technology & Innovative Project(No.20092113A05)
文摘This observational study investigates the variation of PM2.5 concentration and its ratio against PM10 concentration under different weather systems and pollution types. The study was conducted in Hangzhou on east China's Yangtze River Delta using data collected at seven ambient air quality monitoring stations around the metropolitan area between 2006 and 2008 and using weather information in the same period. Nine predominant weather systems affecting the city were classified through careful analysis of the 11- year surface and upper air weather charts from 1996 to 2006. Each observational day was then assigned to one of the nine weather systems. It was found that the PM2.5 concentration varied greatly for different weather systems, with the highest PM2.5 concentration associated with the post-cold-frontal system at 0.091 mg/m^3 and the lowest PM2.5 concentration with the easterlies system at 0.038 mg/m^3, although the PM2.5/PM10 ratio remained consistently above 0.5 for all systems. The post-cold-frontal system typically occurs in autumn and winter while the easterlies system is more a summer phenomenon. Among all types of pollution, the highest PM2.5 concentration of 0.117 mg/m^3 coincided with the large-scale continuous pollution events, suggesting that this type of pollution was more conducive to the formation of secondary particulate matters. The ratio of PM2.5/PM10 was above 0.5 in non-pollution days and all pollution types but one under the influence of dust storms when the ratio decreased to 0.3 or less. The outcomes of this study could be used to develop a rudimental predictive model of PM2.5 concentration based on weather system and pollution type.