This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic m...This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.展开更多
AIM To examine the accuracy of machine learning to relate particulate matter(PM) 2.5 and PM10 concentrations to upper respiratory tract infections(URIs).METHODS Daily nationwide and regional outdoor PM2.5 and PM10 con...AIM To examine the accuracy of machine learning to relate particulate matter(PM) 2.5 and PM10 concentrations to upper respiratory tract infections(URIs).METHODS Daily nationwide and regional outdoor PM2.5 and PM10 concentrations collected over 30 consecutive days obtained from the Taiwan Environment Protection Administration were the inputs for machine learning, using multilayer perceptron(MLP), to relate to the subsequent one-week outpatient visits for URIs. TheURI data were obtained from the Centers for Disease Control datasets in Taiwan between 2009 and 2016. The testing used the middle month dataset of each season(January, April, July and October), and the training used the other months' datasets. The weekly URI cases were classified by tertile as high, moderate, and low volumes.RESULTS Both PM concentrations and URI cases peak in winter and spring. In the nationwide data analysis, MLP machine learning can accurately relate the URI volumes of the elderly(89.05% and 88.32%, respectively) and the overall population(81.75% and 83.21%, respectively) with the PM2.5 and PM10 concentrations. In the regional data analyses, greater accuracy is found for PM2.5 than for PM10 for the elderly, particularly in the Central region(78.10% and 74.45%, respectively), whereas greater accuracy is found for PM10 than for PM2.5 for the overall population, particularly in the Northern region(73.19% and 63.04%, respectively).CONCLUSION Short-term PM2.5 and PM10 concentrations were accurately related to the subsequent occurrence of URIs by using machine learning. Our findings suggested that the effects of PM2.5 and PM10 on URI may differ by age, and the mechanism needs further evaluation.展开更多
In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the...In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PM10 concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PM10 concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PM10 concentrations in Beijing municipal area are up to 0.1-15 μg/m^3.展开更多
Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003-2007). There are several predisposing cau...Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003-2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. Objective: This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. Methods: PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spec- trometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was ex- amined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat's lungs was examined by histology. Results: As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmone/la typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 pg). Female rats were more sensitive to PM extracts than males in terms of their pulmonary damages. Conclusions: PMs were not mutagenic to S. typhimurium but can damage the lung tissue of rats.展开更多
This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentr...This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.展开更多
Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ...Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H_(2)O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.展开更多
The Tongon mine, the largest gold mine in C?te d’Ivoire, has been in operation since April 2010. However, to our knowledge to date, no study has been conducted on metallic contamination in suspended particulate matte...The Tongon mine, the largest gold mine in C?te d’Ivoire, has been in operation since April 2010. However, to our knowledge to date, no study has been conducted on metallic contamination in suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) where there is a lack of information on the carcinogenic and non-carcinogenic risk to human health associated with the exposure of populations in the Tongon area to these pollutants. The general objective of this study is to evaluate the level of contamination of PM<sub>10</sub>;PM<sub>2.5</sub> by heavy metals and their impact on the health of populations exposed to these pollutants in the Tongon gold mine area. The sampling and measurement of suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) were done using a MiniVol TAS passive air sampler. Heavy metal concentrations were determined by inductively coupled plasma mass spectroscopy (Nex ION 2000 ICP-MS, USA). The results indicate that the average concentrations of suspended particles (PM<sub>2.5</sub> and PM<sub>10</sub>) obtained are all above the recommended exposure limits. In addition, among the heavy metals contained in the suspended particles, the concentrations of arsenic and nickel are high and all above the standard limit values. The assessment of the health risks related to the inhalation of PM<sub>10</sub> particles reveals that their inhalation over a long period could cause a carcinogenic risk.展开更多
Urban particulate matter 2.5(PM2.5)pollution and public health are closely related,and concerns regarding PM2.5 are widespread.Of the underlying factors,the urban morphology is the most manageable.Therefore,investigat...Urban particulate matter 2.5(PM2.5)pollution and public health are closely related,and concerns regarding PM2.5 are widespread.Of the underlying factors,the urban morphology is the most manageable.Therefore,investigations of the impact of urban three-dimensional(3D)morphology on PM2.5 concentration have important scientific significance.In this paper,39 PM2.5 monitoring sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013.This data set was used to analyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations.Based on the elimination of the meteorological conditions and public transportation factors,the relationships between urban 3D morphology and PM2.5 concentrations are highlighted.Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations.Results demonstrated that road length density(RLD),road area density(RAD),construction area density(CAD),construction height density(CHD),construction volume density(CVD),construction otherness(CO),and vegetation area density(VAD)have positive impacts on the PM2.5 concentrations,whereas water area density(WAD),water fragmentation(WF),and vegetation fragmentation(VF)(except for the 500 m buffer)have negative impacts on the PM2.5 concentrations.Moreover,the correlations between the morphology indices and PM2.5 concentrations varied with the buffer scale.The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentrations and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.展开更多
[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during...[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during 1978 -2008. Moreover, we respectively set monitoring points in urban district, industrial park and beauty spot of Wenzhou in summer and winter of 2010. Element, ion and polycyclic aromatic hydrocarbon com- positions and morphology of the particulate matter were analyzed. [ Result] Dust haze in Wenzhou City mainly appeared in winter and spring, which was related to local meteorological condition. In summer and winter, both PMlo and PM2.s concentrations presented the characteristic of industrial park 〉 commercial area 〉 beauty spot. Chain-like particle aggregates and ultrafine particles were main composition of the atmospheric particulate matter in Wenzhou. Contribution rate of the spherical particle amount was smaller than metropolis, which was related to local industry and traffic. Fe element had the most content in particulate matter. Mass concentration was mainly composed of 6 elements, such as Na, Si, S, K, Ca and Fe. Total concentration of the six elements occupied 70% -80% of the 16 elements. SO^- and NH4* in particulate matter were higher. They were mainly from human activity. Main compositions of the polycyclic aromatic hydrocarbon were naphthalene, anthracene, benzo (b) fluoranthene, indeno (1,2, 3-cd) pyrene and benzo (g, h, i) perylene, which was related to abrupt increase of the motor vehicle. [ Condusion] The research provided scientific basis and technology support for controlling atmospheric particulate matter pollution in Wenzhou City by government and related department.展开更多
Objective Air pollution is an important risk factor for cardiovascular diseases throughout the world.Fine particulate matter(PM)air pollution alone is responsible for over three million deaths each year.Large and grow...Objective Air pollution is an important risk factor for cardiovascular diseases throughout the world.Fine particulate matter(PM)air pollution alone is responsible for over three million deaths each year.Large and growing literature has explored whether short-term exposure to fine particulate matter is associated with stroke,but results from prior studies have been inconsistent.To fill this gap,we assessed the evidence quantitatively from epidemiological time-series studies published worldwide and determined whether short-term exposure to fine particulate matter(<2.5μm or<10μm)diameter[PM2.5 and PM10]was associated with increased risk of hospital admission for stroke(including ischemic and hemorrhagic stroke).展开更多
Offsetting particulate matter emissions has become a critical global aim as there are concerted efforts to deal with environmental and energy poverty challenges.This study consists of investigations of computing emiss...Offsetting particulate matter emissions has become a critical global aim as there are concerted efforts to deal with environmental and energy poverty challenges.This study consists of investigations of computing emissions of particulate matter from biomass fuels in various atmospheres and temperatures.The laboratory setup included a fixed bed electric reactor and a particulate matter(PM)measuring machine interfaced with the flue gas from the fixed bed reactor combustion chamber.The experiments were conducted at seven different temperatures(600℃-1200℃)and six incremental oxygen concentrations(21%-100%).Five biomass types were studied;A-cornstalk,B-wood,C-wheat straw,D-Rice husk,E-Peanut shell,each pulverized to a size of approximately 75 microns.The study shows that PM emitted during char combustion is consistently higher than that emitted during the de-volatilization.During de-volatilization,increase in temperature leads to linear decrease in PM emission between atmospheres of 21%O_(2)to 50%O_(2),thereafter,between 70%O_(2)to 100%O_(2);increase in temperature leads to a rise in PM emission.The average PM formation from all the five considered biomass is relatively comparable however,with differing atmospheres and temperatures,the fibrous and low-density biomass forms more PM.During char combustion,the study shows that at oxygen levels of 21%,70%,90%and 100%,increase in temperature leads to increased PM emission.The increase in oxygen concentration and temperature increases the rate of combustion hence diminishing the time of combustion.展开更多
This study analyzed the relationship between the measured concentration of particulate matter (PM) and green area, which is an important spatial factor affecting urban PM concentration and even more carbon neutral in ...This study analyzed the relationship between the measured concentration of particulate matter (PM) and green area, which is an important spatial factor affecting urban PM concentration and even more carbon neutral in cities. In order to investigate the effects of green area, the green area ratio (GAR) is used and correlated with particulate matter. As a result of analyzing the correlation between GAR and PM concentration using the measured PM data, it was found that there was a positive correlation between the two variables. Hence, the higher the GAR, the lower the PM concentration. It can be said that the introduction of spatial elements with high GAR scores, such as parks and forests in cities, is effective in reducing PM concentration. In this study, a portable PM monitoring system using a vehicle for PM measurement was also established and operated. As a result, it was found that a PM monitoring system using a light-scattering sensor is an effective PM measurement method that can be used at the local government level. It was also found that a follow-up study is needed in the future to identify the PM mitigation functions of urban green areas according to the detailed characteristics of green areas as well as various environmental factors. This study can be used in air quality improvement activities and efforts as reference data by policy decision makers and in the field of environmental planning associated with the removal of airborne particulate matter pollution in urban areas.展开更多
This paper reports on the use of a kite-based system for measuring low-altitude particulate matter (PM) concentrations over grassland in Inner Mongolia. The motivation came from PM-concentration measurements at height...This paper reports on the use of a kite-based system for measuring low-altitude particulate matter (PM) concentrations over grassland in Inner Mongolia. The motivation came from PM-concentration measurements at heights below 3 m over non-erodible surfaces which showed constant concentrations and made flux calculations relatively uncertain. One aim was the quantification of wind-driven matter fluxes across ecosystem boundaries, where the relevant layer can be assumed at heights below 100 m. Compared to other measurement techniques (e.g. LIDAR, towers and airborne systems) kite-based systems represent an inexpensive, highly flexible research tool which is well-suited for application in remote sites. The basis of the introduced system is a 4 m2 Parafoil kite which has enough lifting capacity to carry equipment of about 6 kg at wind velocities between 3 ms-1 to nearly 20 ms-1. A self-adjusting platform was constructed to balance moves and to carry a portable Environmental Dust Monitor (EDM), anemometer and a GPS receiver. So, all parameters necessary for a vertical profile of dust fluxes could be measured. In the first flights the applied kite-based dust profiling system (KIDS) was examined according to general technical application problems. Firstly, the influence of diverse surface characteristics, the flying condition and height-stability was tested. The result suggests that surface characteristics in general have a higher influence than the optimal wind velocity, which ranged from 9 ms-1 to 17 ms-1. Secondly, uncertainties in the measured data were quantified and assessed. The uncertainties in wind velocity measurements due to motion in horizontal and vertical direction were not higher than 0.45% - 0.65% and 1.8% - 2.2% during the kite ascent. The outcome of the study illustrates the suitable application of KIDS for low-altitude measurements in remote sites.展开更多
Inhalation and atmospheric pollution studies have focused on particulate matter due to correlations and associations with various morbidities and mortalities. This research analyzed ambient concentrations of inhalable...Inhalation and atmospheric pollution studies have focused on particulate matter due to correlations and associations with various morbidities and mortalities. This research analyzed ambient concentrations of inhalable particulate matter (PM10) on the island of Curaçao in order to evaluate through comparative literature analysis and recommended public health guidelines the potential health risks. Available hourly, daily and monthly PM10 measurements were accessed from June 2010 through December 2014 from a local air monitoring station in Willemstad. Mean annual concentrations of PM10 (31 - 122 μg/m3) in Curaçao are among the highest reported globally, demonstrating an increasing trend over time and exceed current public health guidelines recommended by local and international agencies. While the epidemiological evidence is inadequate to infer a causal association between health effects and long-term exposures of the measured PM10 concentrations, the results indicate that emissions controls are not adequate for compliance with international exposure standards.展开更多
To assess the exposure of residents in rural communities in the Yukon Flats to particulate matter of 2.5 μm or less in diameter (PM<sub><span style="font-family:Verdana;">2.5</span></su...To assess the exposure of residents in rural communities in the Yukon Flats to particulate matter of 2.5 μm or less in diameter (PM<sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">), both indoor and outdoor concentration observations were carried out from March to September 2019 in Ft. Yukon, Alaska. Indoor concentrations were measured at 0.61 m (breathing level during sleeping) in homes and at 1.52 m heights (breathing level of standing adult) in homes and office/commercial buildings. Air quality was better at both heights in cabins than frame homes both during times with and without surface-based inversions. In frame houses, concentrations were higher at 0.61 m than 1.52 m, while the opposite is true typically for cabins. Differences between shoulder season and summer indoor concentrations in residences were related to changes in heating, subsistence lifestyle and mosquito repellents. In summer, office and commercial buildings, air quality decreased due to increased indoor emissions related to increased use of equipment and mosquito pics as well as more merchandise. During summer indoor concentrations reached unhealthy for sensitive groups to hazardous conditions for extended times that even exceeded the high outdoor concentrations. Due to nearby wildfires, July mean outdoor concentrations were 55.3 μg·m<sup>-</sup></span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> which exceeds the 24-h US National Ambient Air Quality Standard of 35 μg·m</span><span style="font-family:Verdana;"><sup>-3</sup></span><span style="font-family:Verdana;">. Indoor and outdoor concentrations correlated the strongest with each other for office/commercial buildings, followed by frame houses and cabins. Office/commercial buildings with temperature monitors had one to two orders of magnitude lower concentrations than those without.</span>展开更多
基金The National Natural Science Foundation of China(No.40275040) and the Shanghai Leading Academic Disciplines(No. T0105)
文摘This work mainly focuses on the mineralogical study of particulate matter(PM10) in Beijing. Samples were collected on polycarbonate filter from April, 2002 to March, 2003 in Beijing urban area. Scanning electronic microscopy coupled with energy dispersive X-ray(SEM/EDX) was used to investigate individual mineral particles in Beijing PM10. 1454 individual mineral particulates from 48 samples were analysed by SEM/EDX. The results revealed that mineral particulates were complex and heterogeneous. 38 kinds of minerals in PM10 were identified. The clay minerals, of annual average percentage of 30.1%, were the main composition among the identified minerals, and illite/smectite was the main composition in clay minerals, reaching up to 35%. Annual average percentage of quartz, calcite, compound particulates, carbonates were 13.5%, 10.9%, 11.95%, 10.31%, respectively. Annual average percentage less than 10% were gypsum, feldspar, dolomite, and so on. Fluorite, apatite, halite, barite and chloridize zinc(ZnCl2) were firstly identified in Beijing PM10. Sulfurization was found on surface of mineral particles, suggested extensive atmospheric reaction in air during summer.
基金Supported by Hualien Armed Forces General Hospital,No.805-C107-14Ministry of Science and Technology,Taiwan,R.O.C.,No.MOST 107-2221-E-899-002-MY3
文摘AIM To examine the accuracy of machine learning to relate particulate matter(PM) 2.5 and PM10 concentrations to upper respiratory tract infections(URIs).METHODS Daily nationwide and regional outdoor PM2.5 and PM10 concentrations collected over 30 consecutive days obtained from the Taiwan Environment Protection Administration were the inputs for machine learning, using multilayer perceptron(MLP), to relate to the subsequent one-week outpatient visits for URIs. TheURI data were obtained from the Centers for Disease Control datasets in Taiwan between 2009 and 2016. The testing used the middle month dataset of each season(January, April, July and October), and the training used the other months' datasets. The weekly URI cases were classified by tertile as high, moderate, and low volumes.RESULTS Both PM concentrations and URI cases peak in winter and spring. In the nationwide data analysis, MLP machine learning can accurately relate the URI volumes of the elderly(89.05% and 88.32%, respectively) and the overall population(81.75% and 83.21%, respectively) with the PM2.5 and PM10 concentrations. In the regional data analyses, greater accuracy is found for PM2.5 than for PM10 for the elderly, particularly in the Central region(78.10% and 74.45%, respectively), whereas greater accuracy is found for PM10 than for PM2.5 for the overall population, particularly in the Northern region(73.19% and 63.04%, respectively).CONCLUSION Short-term PM2.5 and PM10 concentrations were accurately related to the subsequent occurrence of URIs by using machine learning. Our findings suggested that the effects of PM2.5 and PM10 on URI may differ by age, and the mechanism needs further evaluation.
文摘In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PM10 concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PM10 concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PM10 concentrations in Beijing municipal area are up to 0.1-15 μg/m^3.
基金Project supported by the Oncological Society of Thailand under the Royal Patronage of Her Majesty the Queen(No.RE53006)
文摘Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003-2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. Objective: This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. Methods: PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spec- trometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was ex- amined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat's lungs was examined by histology. Results: As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmone/la typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 pg). Female rats were more sensitive to PM extracts than males in terms of their pulmonary damages. Conclusions: PMs were not mutagenic to S. typhimurium but can damage the lung tissue of rats.
文摘This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.
文摘Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H_(2)O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.
文摘The Tongon mine, the largest gold mine in C?te d’Ivoire, has been in operation since April 2010. However, to our knowledge to date, no study has been conducted on metallic contamination in suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) where there is a lack of information on the carcinogenic and non-carcinogenic risk to human health associated with the exposure of populations in the Tongon area to these pollutants. The general objective of this study is to evaluate the level of contamination of PM<sub>10</sub>;PM<sub>2.5</sub> by heavy metals and their impact on the health of populations exposed to these pollutants in the Tongon gold mine area. The sampling and measurement of suspended particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) were done using a MiniVol TAS passive air sampler. Heavy metal concentrations were determined by inductively coupled plasma mass spectroscopy (Nex ION 2000 ICP-MS, USA). The results indicate that the average concentrations of suspended particles (PM<sub>2.5</sub> and PM<sub>10</sub>) obtained are all above the recommended exposure limits. In addition, among the heavy metals contained in the suspended particles, the concentrations of arsenic and nickel are high and all above the standard limit values. The assessment of the health risks related to the inhalation of PM<sub>10</sub> particles reveals that their inhalation over a long period could cause a carcinogenic risk.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFB0502504)Beijing Excellent Youth Talent Program(No.2015400018760G294)National Natural Science Foundation of China(No.41201443,41001267).
文摘Urban particulate matter 2.5(PM2.5)pollution and public health are closely related,and concerns regarding PM2.5 are widespread.Of the underlying factors,the urban morphology is the most manageable.Therefore,investigations of the impact of urban three-dimensional(3D)morphology on PM2.5 concentration have important scientific significance.In this paper,39 PM2.5 monitoring sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013.This data set was used to analyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations.Based on the elimination of the meteorological conditions and public transportation factors,the relationships between urban 3D morphology and PM2.5 concentrations are highlighted.Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations.Results demonstrated that road length density(RLD),road area density(RAD),construction area density(CAD),construction height density(CHD),construction volume density(CVD),construction otherness(CO),and vegetation area density(VAD)have positive impacts on the PM2.5 concentrations,whereas water area density(WAD),water fragmentation(WF),and vegetation fragmentation(VF)(except for the 500 m buffer)have negative impacts on the PM2.5 concentrations.Moreover,the correlations between the morphology indices and PM2.5 concentrations varied with the buffer scale.The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentrations and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.
基金Supported by Study on Formation Reason and Early Warning of the Dust Haze and Atmospheric Complex Pollution Control in Wenzhou City ( R20090124)
文摘[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during 1978 -2008. Moreover, we respectively set monitoring points in urban district, industrial park and beauty spot of Wenzhou in summer and winter of 2010. Element, ion and polycyclic aromatic hydrocarbon com- positions and morphology of the particulate matter were analyzed. [ Result] Dust haze in Wenzhou City mainly appeared in winter and spring, which was related to local meteorological condition. In summer and winter, both PMlo and PM2.s concentrations presented the characteristic of industrial park 〉 commercial area 〉 beauty spot. Chain-like particle aggregates and ultrafine particles were main composition of the atmospheric particulate matter in Wenzhou. Contribution rate of the spherical particle amount was smaller than metropolis, which was related to local industry and traffic. Fe element had the most content in particulate matter. Mass concentration was mainly composed of 6 elements, such as Na, Si, S, K, Ca and Fe. Total concentration of the six elements occupied 70% -80% of the 16 elements. SO^- and NH4* in particulate matter were higher. They were mainly from human activity. Main compositions of the polycyclic aromatic hydrocarbon were naphthalene, anthracene, benzo (b) fluoranthene, indeno (1,2, 3-cd) pyrene and benzo (g, h, i) perylene, which was related to abrupt increase of the motor vehicle. [ Condusion] The research provided scientific basis and technology support for controlling atmospheric particulate matter pollution in Wenzhou City by government and related department.
文摘Objective Air pollution is an important risk factor for cardiovascular diseases throughout the world.Fine particulate matter(PM)air pollution alone is responsible for over three million deaths each year.Large and growing literature has explored whether short-term exposure to fine particulate matter is associated with stroke,but results from prior studies have been inconsistent.To fill this gap,we assessed the evidence quantitatively from epidemiological time-series studies published worldwide and determined whether short-term exposure to fine particulate matter(<2.5μm or<10μm)diameter[PM2.5 and PM10]was associated with increased risk of hospital admission for stroke(including ischemic and hemorrhagic stroke).
基金Authors are grateful to Quanzhou Tongjiang Scholar Special Fund for financial support through Grant No.(600005-Z17X0234)Quanzhou Science and Technology Bureau for financial support through Grant No.(2018Z010)+2 种基金Huaqiao University through Grant No.(17BS201)the Fujian ProvincialDepartment of Science and Technology for financial support through Grant(2018J05121)Authors are also grateful for financial support from the Fujian Provincial Department of Science and Technology through Grant Nos.2021I0014 and 2018J05121.
文摘Offsetting particulate matter emissions has become a critical global aim as there are concerted efforts to deal with environmental and energy poverty challenges.This study consists of investigations of computing emissions of particulate matter from biomass fuels in various atmospheres and temperatures.The laboratory setup included a fixed bed electric reactor and a particulate matter(PM)measuring machine interfaced with the flue gas from the fixed bed reactor combustion chamber.The experiments were conducted at seven different temperatures(600℃-1200℃)and six incremental oxygen concentrations(21%-100%).Five biomass types were studied;A-cornstalk,B-wood,C-wheat straw,D-Rice husk,E-Peanut shell,each pulverized to a size of approximately 75 microns.The study shows that PM emitted during char combustion is consistently higher than that emitted during the de-volatilization.During de-volatilization,increase in temperature leads to linear decrease in PM emission between atmospheres of 21%O_(2)to 50%O_(2),thereafter,between 70%O_(2)to 100%O_(2);increase in temperature leads to a rise in PM emission.The average PM formation from all the five considered biomass is relatively comparable however,with differing atmospheres and temperatures,the fibrous and low-density biomass forms more PM.During char combustion,the study shows that at oxygen levels of 21%,70%,90%and 100%,increase in temperature leads to increased PM emission.The increase in oxygen concentration and temperature increases the rate of combustion hence diminishing the time of combustion.
文摘This study analyzed the relationship between the measured concentration of particulate matter (PM) and green area, which is an important spatial factor affecting urban PM concentration and even more carbon neutral in cities. In order to investigate the effects of green area, the green area ratio (GAR) is used and correlated with particulate matter. As a result of analyzing the correlation between GAR and PM concentration using the measured PM data, it was found that there was a positive correlation between the two variables. Hence, the higher the GAR, the lower the PM concentration. It can be said that the introduction of spatial elements with high GAR scores, such as parks and forests in cities, is effective in reducing PM concentration. In this study, a portable PM monitoring system using a vehicle for PM measurement was also established and operated. As a result, it was found that a PM monitoring system using a light-scattering sensor is an effective PM measurement method that can be used at the local government level. It was also found that a follow-up study is needed in the future to identify the PM mitigation functions of urban green areas according to the detailed characteristics of green areas as well as various environmental factors. This study can be used in air quality improvement activities and efforts as reference data by policy decision makers and in the field of environmental planning associated with the removal of airborne particulate matter pollution in urban areas.
文摘This paper reports on the use of a kite-based system for measuring low-altitude particulate matter (PM) concentrations over grassland in Inner Mongolia. The motivation came from PM-concentration measurements at heights below 3 m over non-erodible surfaces which showed constant concentrations and made flux calculations relatively uncertain. One aim was the quantification of wind-driven matter fluxes across ecosystem boundaries, where the relevant layer can be assumed at heights below 100 m. Compared to other measurement techniques (e.g. LIDAR, towers and airborne systems) kite-based systems represent an inexpensive, highly flexible research tool which is well-suited for application in remote sites. The basis of the introduced system is a 4 m2 Parafoil kite which has enough lifting capacity to carry equipment of about 6 kg at wind velocities between 3 ms-1 to nearly 20 ms-1. A self-adjusting platform was constructed to balance moves and to carry a portable Environmental Dust Monitor (EDM), anemometer and a GPS receiver. So, all parameters necessary for a vertical profile of dust fluxes could be measured. In the first flights the applied kite-based dust profiling system (KIDS) was examined according to general technical application problems. Firstly, the influence of diverse surface characteristics, the flying condition and height-stability was tested. The result suggests that surface characteristics in general have a higher influence than the optimal wind velocity, which ranged from 9 ms-1 to 17 ms-1. Secondly, uncertainties in the measured data were quantified and assessed. The uncertainties in wind velocity measurements due to motion in horizontal and vertical direction were not higher than 0.45% - 0.65% and 1.8% - 2.2% during the kite ascent. The outcome of the study illustrates the suitable application of KIDS for low-altitude measurements in remote sites.
文摘Inhalation and atmospheric pollution studies have focused on particulate matter due to correlations and associations with various morbidities and mortalities. This research analyzed ambient concentrations of inhalable particulate matter (PM10) on the island of Curaçao in order to evaluate through comparative literature analysis and recommended public health guidelines the potential health risks. Available hourly, daily and monthly PM10 measurements were accessed from June 2010 through December 2014 from a local air monitoring station in Willemstad. Mean annual concentrations of PM10 (31 - 122 μg/m3) in Curaçao are among the highest reported globally, demonstrating an increasing trend over time and exceed current public health guidelines recommended by local and international agencies. While the epidemiological evidence is inadequate to infer a causal association between health effects and long-term exposures of the measured PM10 concentrations, the results indicate that emissions controls are not adequate for compliance with international exposure standards.
文摘To assess the exposure of residents in rural communities in the Yukon Flats to particulate matter of 2.5 μm or less in diameter (PM<sub><span style="font-family:Verdana;">2.5</span></sub><span style="font-family:Verdana;">), both indoor and outdoor concentration observations were carried out from March to September 2019 in Ft. Yukon, Alaska. Indoor concentrations were measured at 0.61 m (breathing level during sleeping) in homes and at 1.52 m heights (breathing level of standing adult) in homes and office/commercial buildings. Air quality was better at both heights in cabins than frame homes both during times with and without surface-based inversions. In frame houses, concentrations were higher at 0.61 m than 1.52 m, while the opposite is true typically for cabins. Differences between shoulder season and summer indoor concentrations in residences were related to changes in heating, subsistence lifestyle and mosquito repellents. In summer, office and commercial buildings, air quality decreased due to increased indoor emissions related to increased use of equipment and mosquito pics as well as more merchandise. During summer indoor concentrations reached unhealthy for sensitive groups to hazardous conditions for extended times that even exceeded the high outdoor concentrations. Due to nearby wildfires, July mean outdoor concentrations were 55.3 μg·m<sup>-</sup></span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> which exceeds the 24-h US National Ambient Air Quality Standard of 35 μg·m</span><span style="font-family:Verdana;"><sup>-3</sup></span><span style="font-family:Verdana;">. Indoor and outdoor concentrations correlated the strongest with each other for office/commercial buildings, followed by frame houses and cabins. Office/commercial buildings with temperature monitors had one to two orders of magnitude lower concentrations than those without.</span>