Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment...Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment. POC in the upper reaches of the Amazon River has more positive δC values(--24.5‰ to -- 28.0‰) than that in the middle and lower reaches (--27.9‰ to -- 30.1‰). TheδC of POC from the tributaries is generally more negative than that observed in the Amazon mainchannel. This δC datum shows that the POC in the Amazon main channel is predominantly of terres-trial origin rather than a result of in situ production. A large range of δC values (--17.5‰ to -28.4‰) is observed in the Amazon Estuary and plume. and is considered as the result of the mixing展开更多
The characteristics of water-soluble ions in size-resolved particulate matter were investigated usingion chromatography at Shangdianzi, a regional background station of Beijing, Tianjin, and Hebei. Seasonal total conc...The characteristics of water-soluble ions in size-resolved particulate matter were investigated usingion chromatography at Shangdianzi, a regional background station of Beijing, Tianjin, and Hebei. Seasonal total concentrations of ions (Na+, Mg2+, IC, Ca2+, NH+4, Cl-, SO2-4 and NO-3) were 75.5 ± 52.9 μg/m3 in spring, 26.5 ± 12.3 Bg/m3 in summer, 22.7 ± 20.4 μg/m3 in autumn, and 31.1 ± 23.9 μg/m3 in winter, respectively. The secondary ions (NO3, SO2-4 and NH+4), mainly associated with fine particles, accounted for 84.2% in spring, 82.1% in summer, 81.5% in autumn and 76.3% in winter of all ions. Strong correlations were found between NH+4 and SO2-4 (r = 0.95, p 〈 0.01) as well as NH+4 and NO-3 (r = 0.90, p 〈 0.01) in fine particles; while in coarse particles, correlations between Mg2+ and NO-3 (r = 0.80, p 〈 0.01), and Ca2+ and NO2+ (r = 0.85, p 〈 0.01) were found. The concentrations of Na+, IC, Mg2+, Ca2+, NH+4, Cl-, NO3, and SC2-4 were 2.02, 0.81, 0.36, 1.65, 9.58, 4.01, 18.9, and 18.4 μg/m3 in particulate matter from southeast-derived air masses, which were typically 1.58-3.37 times higher than in northwest trajectories. Thus, concentrations of water-soluble ions at this background station were heavily influenced by regional transport of serious pollution derived from biomass burning, coal combustion, industrial and vehicle exhaust emissions from Beijing, Tianjin, and Hebei.展开更多
文摘Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment. POC in the upper reaches of the Amazon River has more positive δC values(--24.5‰ to -- 28.0‰) than that in the middle and lower reaches (--27.9‰ to -- 30.1‰). TheδC of POC from the tributaries is generally more negative than that observed in the Amazon mainchannel. This δC datum shows that the POC in the Amazon main channel is predominantly of terres-trial origin rather than a result of in situ production. A large range of δC values (--17.5‰ to -28.4‰) is observed in the Amazon Estuary and plume. and is considered as the result of the mixing
基金supported by the National Environmental Protection Commonweal Research Project(No.201509062 and No.201409073)the National Natural Science Foundation of China(No.41105089)+1 种基金Research Project of Environmental Development Cenre(No.DY-2016-5)State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences(No.SKLECRA201637)
文摘The characteristics of water-soluble ions in size-resolved particulate matter were investigated usingion chromatography at Shangdianzi, a regional background station of Beijing, Tianjin, and Hebei. Seasonal total concentrations of ions (Na+, Mg2+, IC, Ca2+, NH+4, Cl-, SO2-4 and NO-3) were 75.5 ± 52.9 μg/m3 in spring, 26.5 ± 12.3 Bg/m3 in summer, 22.7 ± 20.4 μg/m3 in autumn, and 31.1 ± 23.9 μg/m3 in winter, respectively. The secondary ions (NO3, SO2-4 and NH+4), mainly associated with fine particles, accounted for 84.2% in spring, 82.1% in summer, 81.5% in autumn and 76.3% in winter of all ions. Strong correlations were found between NH+4 and SO2-4 (r = 0.95, p 〈 0.01) as well as NH+4 and NO-3 (r = 0.90, p 〈 0.01) in fine particles; while in coarse particles, correlations between Mg2+ and NO-3 (r = 0.80, p 〈 0.01), and Ca2+ and NO2+ (r = 0.85, p 〈 0.01) were found. The concentrations of Na+, IC, Mg2+, Ca2+, NH+4, Cl-, NO3, and SC2-4 were 2.02, 0.81, 0.36, 1.65, 9.58, 4.01, 18.9, and 18.4 μg/m3 in particulate matter from southeast-derived air masses, which were typically 1.58-3.37 times higher than in northwest trajectories. Thus, concentrations of water-soluble ions at this background station were heavily influenced by regional transport of serious pollution derived from biomass burning, coal combustion, industrial and vehicle exhaust emissions from Beijing, Tianjin, and Hebei.