The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estim...Chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estimate the building-resolving wind flow as well as pollutant dispersion. However, it takes too much time and requires enormous computational power in emergency situations. As a time demanding task, the estimation of the chemical spill consequence for emergency response requires abundant wind field information. In this paper, a comprehensive wind field reconstruction framework is proposed, providing the ability of parameter tuning for best reconstruction accuracy. The core of the framework is a data regression model built on principal component analysis(PCA) and extreme learning machine(ELM). To improve the accuracy, the wind field estimation from the regression model is further revised from local wind observations. The optimal placement of anemometers is provided based on the maximum projection on minimum eigenspace(MPME) algorithm. The fire dynamic simulator(FDS) generates high-resolution data of wind flow over complex geometries for the framework to be implemented. The reconstructed wind field is evaluated against simulation data and an overall reconstruction error of 9% is achieved. When used in real case,the error increases to around 12% since no convergence check is available. With parameter tuning abilities,the proposed framework provides an efficient way of reconstructing the wind flow in congested areas.展开更多
Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and ill...Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.展开更多
In this study,the influence of the position of the rotor iron bridge on the DC-winding-induced voltage pulsation in a partitioned stator wound field switched flux machine is investigated.Analytical and finite element(...In this study,the influence of the position of the rotor iron bridge on the DC-winding-induced voltage pulsation in a partitioned stator wound field switched flux machine is investigated.Analytical and finite element(FE)analyses show that both the open-circuit and on-load DC-winding-induced voltages can be minimized by positioning the rotor iron bridge adjacent to the inner air gap closer to the DC winding.This is due to a smoother inner air-gap magnetic reluctance while maintaining the average electromagnetic torque at 92.59%of the maximum value.The analyzed machine with the rotor iron bridge adjacent to the inner air gap is prototyped,and the experimental results validate the analytical and FE results.展开更多
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
基金Supported by the National Natural Science Foundation of China(21706069and 61751305)the Fundamental Research Funds for the Central Universities(222201814039).
文摘Chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estimate the building-resolving wind flow as well as pollutant dispersion. However, it takes too much time and requires enormous computational power in emergency situations. As a time demanding task, the estimation of the chemical spill consequence for emergency response requires abundant wind field information. In this paper, a comprehensive wind field reconstruction framework is proposed, providing the ability of parameter tuning for best reconstruction accuracy. The core of the framework is a data regression model built on principal component analysis(PCA) and extreme learning machine(ELM). To improve the accuracy, the wind field estimation from the regression model is further revised from local wind observations. The optimal placement of anemometers is provided based on the maximum projection on minimum eigenspace(MPME) algorithm. The fire dynamic simulator(FDS) generates high-resolution data of wind flow over complex geometries for the framework to be implemented. The reconstructed wind field is evaluated against simulation data and an overall reconstruction error of 9% is achieved. When used in real case,the error increases to around 12% since no convergence check is available. With parameter tuning abilities,the proposed framework provides an efficient way of reconstructing the wind flow in congested areas.
基金Acknowledgements The authors are grateful for the support of this research by the Committee of National Science Foundation of China (50908077) and Foundation of Heilongjiang Province Educational Committee (11551368).
文摘Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.
文摘In this study,the influence of the position of the rotor iron bridge on the DC-winding-induced voltage pulsation in a partitioned stator wound field switched flux machine is investigated.Analytical and finite element(FE)analyses show that both the open-circuit and on-load DC-winding-induced voltages can be minimized by positioning the rotor iron bridge adjacent to the inner air gap closer to the DC winding.This is due to a smoother inner air-gap magnetic reluctance while maintaining the average electromagnetic torque at 92.59%of the maximum value.The analyzed machine with the rotor iron bridge adjacent to the inner air gap is prototyped,and the experimental results validate the analytical and FE results.