Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to ana...Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.展开更多
Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay...Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences.展开更多
As an essential component of bus dwelling time, passenger boarding time has a significant impact on bus running reliability and service quality. In order to understand the passengers’ boarding process and mitigate pa...As an essential component of bus dwelling time, passenger boarding time has a significant impact on bus running reliability and service quality. In order to understand the passengers’ boarding process and mitigate passenger boarding time, a regression analysis framework is proposed to capture the difference and influential factors of boarding time for adult and elderly passengers based on smart card data from Changzhou. Boarding gap, the time difference between two consecutive smart card tapping records, is calculated to approximate passenger boarding time. Analysis of variance is applied to identify whether the difference in boarding time between adults and seniors is statistically significant. The multivariate regression modeling approach is implemented to analyze the influences of passenger types, marginal effects of each additional boarding passenger and bus floor types on the total boarding time at each stop. Results show that a constant difference exists in boarding time between adults and seniors even without considering the specific bus characteristics. The average passenger boarding time decreases when the number of passenger increases. The existence of two entrance steps delays the boarding process, especially for elderly passengers.展开更多
Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model i...Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%.展开更多
基金Sponsored by Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51561135003)Key Project of National Natural Science Foundation of China(Grant No.51338003)
文摘Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.
基金This work was supported by the National Natural Science Foundation of China(No.71871188).
文摘Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences.
基金The National Natural Science Foundation of China(No.51338003,71801041)
文摘As an essential component of bus dwelling time, passenger boarding time has a significant impact on bus running reliability and service quality. In order to understand the passengers’ boarding process and mitigate passenger boarding time, a regression analysis framework is proposed to capture the difference and influential factors of boarding time for adult and elderly passengers based on smart card data from Changzhou. Boarding gap, the time difference between two consecutive smart card tapping records, is calculated to approximate passenger boarding time. Analysis of variance is applied to identify whether the difference in boarding time between adults and seniors is statistically significant. The multivariate regression modeling approach is implemented to analyze the influences of passenger types, marginal effects of each additional boarding passenger and bus floor types on the total boarding time at each stop. Results show that a constant difference exists in boarding time between adults and seniors even without considering the specific bus characteristics. The average passenger boarding time decreases when the number of passenger increases. The existence of two entrance steps delays the boarding process, especially for elderly passengers.
基金supported by the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)the Ningbo Natural Science Foundation of China(Grant No.202003N4142)+1 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K.C.Wong Magna Fund in Ningbo University,China.
文摘Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%.