A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR damper...A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR dampers are used as clutches. Rules for velocity adjustment are established according to the working mechanism of TMD. The analysis program is developed on a VB platform. Seismic response of SDOF structures with both passive TMD and velocity adjustable TMD are analyzed. The results show that (l) the control effectiveness of passive TMDs is usually unstable; (2) the control effectiveness of the proposed semi-active TMDs is much better than passive TMDs under typical seismic ground motions; and (3) unlike the passive TMD system, the proposed velocity adjustable TMDs exhibit good control effectiveness even when the primary structure performance becomes inelastic during severe earthquakes.展开更多
基金National Natural Science Foundation of China Under Grants No. 50508003 and No.50478042
文摘A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR dampers are used as clutches. Rules for velocity adjustment are established according to the working mechanism of TMD. The analysis program is developed on a VB platform. Seismic response of SDOF structures with both passive TMD and velocity adjustable TMD are analyzed. The results show that (l) the control effectiveness of passive TMDs is usually unstable; (2) the control effectiveness of the proposed semi-active TMDs is much better than passive TMDs under typical seismic ground motions; and (3) unlike the passive TMD system, the proposed velocity adjustable TMDs exhibit good control effectiveness even when the primary structure performance becomes inelastic during severe earthquakes.