In order to improve the efficiency of gear shifter testing,a kind of shift robot with a special pas-sive joint is proposed to complete the human-like shifting operation automatically.The shift robot is mainly composed...In order to improve the efficiency of gear shifter testing,a kind of shift robot with a special pas-sive joint is proposed to complete the human-like shifting operation automatically.The shift robot is mainly composed of two prismatic pairs,a cylindrical pair and a passive joint.The two prismatic pairs act as actuators of the mechanism to complete a part of the shifting operation,and then the shift lever can be pulled into the accurate gear position by the shift torque of the gear shifter.However,the shifting lever may skip the target gear position into the next gear position.In order to solve the gear-skip phenomenon,a limit block is applied to the passive joint.Then,the shifting processes are simulated through the dynamic model of the shift robot.The optimal position of the limit block is de-termined based on its dynamic characteristics.展开更多
The manipulation and constraint equations are established by considering the pure rolling motion in a dexterous hand as two passive joints. According to mapping relation among the motion of the system, the differentia...The manipulation and constraint equations are established by considering the pure rolling motion in a dexterous hand as two passive joints. According to mapping relation among the motion of the system, the differential kinematics and mobility are studied. The minimal structure for realizing the task motion of the object is obtained, and the conditions for dexterous manipulation are presented. Finally, some rolling manipulations are used as examples to demonstrate the applicability of approach proposed.展开更多
Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink...Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.展开更多
Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait ...Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of fiat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.展开更多
Micromechanics aims mainly at establishing the quantitative relation between the macroscopic mechanical behavior and the microstructure of heterogeneous materials.
基金Supported by the National Natural Science Foundation of China(No.51975008)the Beijing Municipal Natural Science Foundation(No.3192002).
文摘In order to improve the efficiency of gear shifter testing,a kind of shift robot with a special pas-sive joint is proposed to complete the human-like shifting operation automatically.The shift robot is mainly composed of two prismatic pairs,a cylindrical pair and a passive joint.The two prismatic pairs act as actuators of the mechanism to complete a part of the shifting operation,and then the shift lever can be pulled into the accurate gear position by the shift torque of the gear shifter.However,the shifting lever may skip the target gear position into the next gear position.In order to solve the gear-skip phenomenon,a limit block is applied to the passive joint.Then,the shifting processes are simulated through the dynamic model of the shift robot.The optimal position of the limit block is de-termined based on its dynamic characteristics.
基金This project is supported by Scientific Research Foundation for ReturnedOverseas Chinese Scholars, Education Ministry of China and ProvincialNatural Science Foundation of Shanxi, China (No.2000C37).
文摘The manipulation and constraint equations are established by considering the pure rolling motion in a dexterous hand as two passive joints. According to mapping relation among the motion of the system, the differential kinematics and mobility are studied. The minimal structure for realizing the task motion of the object is obtained, and the conditions for dexterous manipulation are presented. Finally, some rolling manipulations are used as examples to demonstrate the applicability of approach proposed.
文摘Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.
基金supported by the National Natural Science Foundation of China (61005082, 61020106005)Doctoral Fund of Ministry of Education of China (20100001120005)+1 种基金PKU-Biomedical Engineering Join Seed Grant 2012the 985 Project of PekingUniversity (3J0865600)
文摘Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of fiat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.
文摘Micromechanics aims mainly at establishing the quantitative relation between the macroscopic mechanical behavior and the microstructure of heterogeneous materials.