Technology of passive location has broad prospects in applications. In this paper, the method using the phase rate of change for the single observer passive location is introduced based on existing methods. One can ob...Technology of passive location has broad prospects in applications. In this paper, the method using the phase rate of change for the single observer passive location is introduced based on existing methods. One can obtain the direction of the target with phase information of two orthogonal interferometers on the observer and the radial distance with the corresponding phase rate of change. Then the target can be located with high speed and precision. A locating approach is given when the flying posture of t...展开更多
The two-station positioning system based on time difference and azimuth measurement has measurement redundancy. Therefore, not only can a positioning solution which is completely independent of the baseline length bet...The two-station positioning system based on time difference and azimuth measurement has measurement redundancy. Therefore, not only can a positioning solution which is completely independent of the baseline length between two stations be derived, but also the baseline length can be solved as an unknown quantity. These findings not only enhance the performance of the two-station positioning system, but also provide a design basis for the construction of a self-organizing dynamic intelligent positioning system.展开更多
With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by ad...With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.展开更多
In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorith...In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.展开更多
The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
Technology of passive location has broad prospects inapplications. In this paper, the sin- gle observer passive locationmethod using phase rate of change is introduced based on existingmeth- ods. This new method can o...Technology of passive location has broad prospects inapplications. In this paper, the sin- gle observer passive locationmethod using phase rate of change is introduced based on existingmeth- ods. This new method can obtain the direction of he target withphase information of two orthogonal interferometers on the observerand the radial distance with the corresponding phase rate of change.Then the target can be located with high speed and precision. Somelocating expressions are given When the flying posture of theobserver is change. Simulations show that this method is effective.展开更多
Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research...Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.展开更多
The conventional mono-station passive location techniques of direction finding are low in speed and accuracy, due to the little information available. In this paper, a novel measurement-rate (derivative) of phase diff...The conventional mono-station passive location techniques of direction finding are low in speed and accuracy, due to the little information available. In this paper, a novel measurement-rate (derivative) of phase difference from a two-element antenna array (interferometer) is introduced, accuracy of a passive location system with this measurement and directions of arrival (DOA) is analyzed, and the Cramer-Rao bound of location error of this system for 3D location is examined by simulations.展开更多
To solve the problem of multiple moving sources passive location, a novel blind source separa- tion (BSS) algorithm based on the muhiset canonical correlation analysis (MCCA) is presented by exploiting the differe...To solve the problem of multiple moving sources passive location, a novel blind source separa- tion (BSS) algorithm based on the muhiset canonical correlation analysis (MCCA) is presented by exploiting the different temporal structure of uncorrelated source signals first, and then on the basis of this algorithm, a novel multiple moving sources passive location method is proposed using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The key technique of this location method is TDOA and FDOA joint estimation, which is based on BSS. By blindly separating mixed signals from multiple moving sources, the multiple sources location problem can be translated to each source location in turn, and the effect of interference and noise can also he removed. The simulation results illustrate that the performance of the MCCA algorithm is very good with relatively light computation burden, and the location algorithm is relatively simple and effective.展开更多
This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency sh...This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency shift and path difference,the virtual path difference is calculated from the measured value of Doppler frequency shift by means of mean value correction.Then,under the assumption that the target is moving at a constant speed along a straight line,two coaxial virtual double base arrays are constructed by using the moving track of the moving target based on the method of fixed period time difference.On this basis,the moving distance of the moving target can be calculated by using the ratio relationship between the frequency difference and the radial distance between the two adjacent detection points in the middle of the array,and the linear solution of the two double base path difference positioning equations.At this point,the relative coordinate position of the moving target can be obtained by directly using the linear solution of the double base path difference positioning equation again.展开更多
For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved pe...For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.展开更多
Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location ...Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.展开更多
For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the...For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.展开更多
A new fusion tracking algorithm is presented to track maneuvering target in three-dimensional (3D) space with bearings-only measurements. With the introduction of passive location and interacting multiple model (IMM) ...A new fusion tracking algorithm is presented to track maneuvering target in three-dimensional (3D) space with bearings-only measurements. With the introduction of passive location and interacting multiple model (IMM) algorithm based on multirate model, the high-rate sequence measurements of two sensors are utilized. Simulation results show that the performance of tracking has been improved. The new algorithm removes the barrier of processing high-rate bearings-only measurements.展开更多
A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location p...A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location parameters between the actual near-field sources and the far-field ones were derived. With Fourier transformation and polynomial-root methods, the elevation and the azimuth of the far-field were obtained, the tracking paths can be developed, and the location parameters of the near-field source can be determined, then the more accurate results can be estimated using an optimization method. The computer simulation results prove that the algorithm for the location of the near-fields is more accurate, effective and suitable for real-time applications.展开更多
On the basis of the linear positioning solution of one-dimensional equidistant double-base linear array,by proper approximate treatment of the strict solution,and by using the direction finding solution of single base...On the basis of the linear positioning solution of one-dimensional equidistant double-base linear array,by proper approximate treatment of the strict solution,and by using the direction finding solution of single base path difference,the sinusoidal median relation of azimuth angle at three stations of the linear array is obtained.By using the sinusoidal median relation,the arithmetic mean solution of azimuth angle at three stations is obtained.All these results reveal the intrinsic correlation between the azimuth angles of one-dimensional linear array.展开更多
This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to est...This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to estimate the location of a target. Compared with the TDOA-only method which needs two steps, the proposed method estimates the target position more directly. The constrained total least squares(CTLS) technique is applied in this approach. It achieves the Cramer–Rao lower bound(CRLB) when the parameter measurements are subject to small Gaussian-distributed errors. Performance analysis and the CRLB of this approach are also studied. Theory verifies that the ATDOA method gets a lower CRLB than the TDOA-only method with the same TDOA measuring error. It can also be seen that the position of the target affects estimating precision.At the same time, the locations of transmitters affect the precision and its gradient direction.Compared with the TDOA, the ATDOA method can obtain more precise target position estimation.Furthermore, the proposed method accomplishes target position estimation with a single transmitter,while the TDOA-only method needs at least four transmitters to get the target position. Furthermore,the transmitters' position errors also affect precision of estimation regularly.展开更多
Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares ...Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares (STLS) problem.The solution of the STLS problem for passive location can be obtained using the inverse iteration method.It also expatiates that both the STLS algorithm and the CTLS algorithm have the same location mean squares error under certain condition.Finally, the article presents a kind of location and tracking algorithm for moving target by combining STLS location algorithm with Kalman filter (KF).The efficiency and superiority of the proposed algorithms can be confirmed by computer simulation results.展开更多
文摘Technology of passive location has broad prospects in applications. In this paper, the method using the phase rate of change for the single observer passive location is introduced based on existing methods. One can obtain the direction of the target with phase information of two orthogonal interferometers on the observer and the radial distance with the corresponding phase rate of change. Then the target can be located with high speed and precision. A locating approach is given when the flying posture of t...
文摘The two-station positioning system based on time difference and azimuth measurement has measurement redundancy. Therefore, not only can a positioning solution which is completely independent of the baseline length between two stations be derived, but also the baseline length can be solved as an unknown quantity. These findings not only enhance the performance of the two-station positioning system, but also provide a design basis for the construction of a self-organizing dynamic intelligent positioning system.
文摘With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.
基金The National High Technology Research and Development Program of China(863Program)(No.2008AA01Z227)the National Natural Science Foundation of China(No.60872075)
文摘In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.
文摘Technology of passive location has broad prospects inapplications. In this paper, the sin- gle observer passive locationmethod using phase rate of change is introduced based on existingmeth- ods. This new method can obtain the direction of he target withphase information of two orthogonal interferometers on the observerand the radial distance with the corresponding phase rate of change.Then the target can be located with high speed and precision. Somelocating expressions are given When the flying posture of theobserver is change. Simulations show that this method is effective.
基金This work was supported by the National Natural Science Foundation of China(61803379)the China Postdoctoral Science Foundation(2017M613370,2018T111129).
文摘Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.
文摘The conventional mono-station passive location techniques of direction finding are low in speed and accuracy, due to the little information available. In this paper, a novel measurement-rate (derivative) of phase difference from a two-element antenna array (interferometer) is introduced, accuracy of a passive location system with this measurement and directions of arrival (DOA) is analyzed, and the Cramer-Rao bound of location error of this system for 3D location is examined by simulations.
基金Supported by the National High Technology Research and Development Program of China(No.2009AAJ116,2009AAJ208,2010AA7010422)the National Science Foundation for Post-Doctoral Scientists of China(No.20080431379,200902671)the Hubei Natural Science Foundation(No.2009CDB031)
文摘To solve the problem of multiple moving sources passive location, a novel blind source separa- tion (BSS) algorithm based on the muhiset canonical correlation analysis (MCCA) is presented by exploiting the different temporal structure of uncorrelated source signals first, and then on the basis of this algorithm, a novel multiple moving sources passive location method is proposed using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The key technique of this location method is TDOA and FDOA joint estimation, which is based on BSS. By blindly separating mixed signals from multiple moving sources, the multiple sources location problem can be translated to each source location in turn, and the effect of interference and noise can also he removed. The simulation results illustrate that the performance of the MCCA algorithm is very good with relatively light computation burden, and the location algorithm is relatively simple and effective.
文摘This paper presents a Doppler passive location method for moving targets with fixed single station using the Doppler frequency shift and time difference information.First,based on the relationship between frequency shift and path difference,the virtual path difference is calculated from the measured value of Doppler frequency shift by means of mean value correction.Then,under the assumption that the target is moving at a constant speed along a straight line,two coaxial virtual double base arrays are constructed by using the moving track of the moving target based on the method of fixed period time difference.On this basis,the moving distance of the moving target can be calculated by using the ratio relationship between the frequency difference and the radial distance between the two adjacent detection points in the middle of the array,and the linear solution of the two double base path difference positioning equations.At this point,the relative coordinate position of the moving target can be obtained by directly using the linear solution of the double base path difference positioning equation again.
基金supported by the National Natural Science Foundation of China(6107210761271300)+4 种基金the Shaanxi Industry Surmount Foundation(2012K06-12)the Arm and Equipment Pre-research Foundationthe Fundamental Research Funds for the Central Universities of China(K0551302006K5051202045K50511020024)
文摘For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.
基金supported by the National Natural Science Foundation of China(6140236561271300)the 13th Five-Year Weaponry PreResearch Project。
文摘Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.
基金Supported by the National Natural Science Foundation of China (No. 60825104,61072107)the National Postdoctor Fundation (No. 20090451251)+1 种基金the Shaanxi Industry Surmount Foundation (2009K08-31)the Fundamental Research Funds for the Central Universities(JY10000-902025) of China
文摘For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.
文摘A new fusion tracking algorithm is presented to track maneuvering target in three-dimensional (3D) space with bearings-only measurements. With the introduction of passive location and interacting multiple model (IMM) algorithm based on multirate model, the high-rate sequence measurements of two sensors are utilized. Simulation results show that the performance of tracking has been improved. The new algorithm removes the barrier of processing high-rate bearings-only measurements.
文摘A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location parameters between the actual near-field sources and the far-field ones were derived. With Fourier transformation and polynomial-root methods, the elevation and the azimuth of the far-field were obtained, the tracking paths can be developed, and the location parameters of the near-field source can be determined, then the more accurate results can be estimated using an optimization method. The computer simulation results prove that the algorithm for the location of the near-fields is more accurate, effective and suitable for real-time applications.
文摘On the basis of the linear positioning solution of one-dimensional equidistant double-base linear array,by proper approximate treatment of the strict solution,and by using the direction finding solution of single base path difference,the sinusoidal median relation of azimuth angle at three stations of the linear array is obtained.By using the sinusoidal median relation,the arithmetic mean solution of azimuth angle at three stations is obtained.All these results reveal the intrinsic correlation between the azimuth angles of one-dimensional linear array.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA7031015)
文摘This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to estimate the location of a target. Compared with the TDOA-only method which needs two steps, the proposed method estimates the target position more directly. The constrained total least squares(CTLS) technique is applied in this approach. It achieves the Cramer–Rao lower bound(CRLB) when the parameter measurements are subject to small Gaussian-distributed errors. Performance analysis and the CRLB of this approach are also studied. Theory verifies that the ATDOA method gets a lower CRLB than the TDOA-only method with the same TDOA measuring error. It can also be seen that the position of the target affects estimating precision.At the same time, the locations of transmitters affect the precision and its gradient direction.Compared with the TDOA, the ATDOA method can obtain more precise target position estimation.Furthermore, the proposed method accomplishes target position estimation with a single transmitter,while the TDOA-only method needs at least four transmitters to get the target position. Furthermore,the transmitters' position errors also affect precision of estimation regularly.
文摘Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares (STLS) problem.The solution of the STLS problem for passive location can be obtained using the inverse iteration method.It also expatiates that both the STLS algorithm and the CTLS algorithm have the same location mean squares error under certain condition.Finally, the article presents a kind of location and tracking algorithm for moving target by combining STLS location algorithm with Kalman filter (KF).The efficiency and superiority of the proposed algorithms can be confirmed by computer simulation results.