According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally st...According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally stored gravity maps, depth sensor and relative log. The algorithm of rate azimuth platform inertial navigation system, error state-space equations, measurement equations and GPNS optimal filter are described. In view of the measurements made by an onboard gravity sensor the Eotvos effect is introduced in the gravity measurement equation of a GPNS optimal filter. A GPNS is studied with the Matlab/Simulink tools; simulation results demonstrate that a GPNS has small errors in platform attitude and position. Because the inertial navigation platform is the rate azimuth platform in the GPNS and gravity sensor is mounted on the rate azimuth platform, the cost of the GPNS is lower than existing GPNS's and according to the above results the GPNS meets the need to maintain accuracy navigation for underwater vehicles over long intervals.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooper...Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.展开更多
文摘According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally stored gravity maps, depth sensor and relative log. The algorithm of rate azimuth platform inertial navigation system, error state-space equations, measurement equations and GPNS optimal filter are described. In view of the measurements made by an onboard gravity sensor the Eotvos effect is introduced in the gravity measurement equation of a GPNS optimal filter. A GPNS is studied with the Matlab/Simulink tools; simulation results demonstrate that a GPNS has small errors in platform attitude and position. Because the inertial navigation platform is the rate azimuth platform in the GPNS and gravity sensor is mounted on the rate azimuth platform, the cost of the GPNS is lower than existing GPNS's and according to the above results the GPNS meets the need to maintain accuracy navigation for underwater vehicles over long intervals.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金supported by the National Natural Science Foundation of China(62101014)the National Key Laboratory of Science and Technology on Space Microwave(6142411203307).
文摘Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.