Thin films of perovskite deposited from solution inevitably introduce large number of defects,which serve as recombination centers and are detrimental for solar cell performance.Although many small molecules and polym...Thin films of perovskite deposited from solution inevitably introduce large number of defects,which serve as recombination centers and are detrimental for solar cell performance.Although many small molecules and polymers have been delicately designed to migrate defects of perovskite films,exploiting credible passivation agents based on natural materials would offer an alternative approach.Here,an ecofriendly and cost-effective biomaterial,ploy-L-lysine(PLL),is identified to effectively passivate the defects of perovskite films prepared by blade-coating.It is found that incorporation of a small amount(2.5 mg mL^(-1))of PLL significantly boosts the performance of printed devices,yielding a high efficiency of 19.45% with an increase in open-circuit voltage by up to 100 mV.Density functional theory calculations combined with X-ray photoelectron spectroscopy reveal that the functional groups(-NH2,-COOH)of PLL effectively migrate the Pb-I antisite defects via Pb-N coordination and suppress the formation of metallic Pb in the blade-coated perovskite film.This work suggests a viable avenue to exploit passivation agents from natural materials for preparation of high-quality perovskite layers for optoelectronic applications.展开更多
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61705090,11804117)Natural Science Foundation of Guangdong Province(2020A1515010853)。
文摘Thin films of perovskite deposited from solution inevitably introduce large number of defects,which serve as recombination centers and are detrimental for solar cell performance.Although many small molecules and polymers have been delicately designed to migrate defects of perovskite films,exploiting credible passivation agents based on natural materials would offer an alternative approach.Here,an ecofriendly and cost-effective biomaterial,ploy-L-lysine(PLL),is identified to effectively passivate the defects of perovskite films prepared by blade-coating.It is found that incorporation of a small amount(2.5 mg mL^(-1))of PLL significantly boosts the performance of printed devices,yielding a high efficiency of 19.45% with an increase in open-circuit voltage by up to 100 mV.Density functional theory calculations combined with X-ray photoelectron spectroscopy reveal that the functional groups(-NH2,-COOH)of PLL effectively migrate the Pb-I antisite defects via Pb-N coordination and suppress the formation of metallic Pb in the blade-coated perovskite film.This work suggests a viable avenue to exploit passivation agents from natural materials for preparation of high-quality perovskite layers for optoelectronic applications.
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.