The security issue is always the most important concern of networked client-server application. On the putpose to build the secure group communication among of a group of client users and one server, in this paper, we...The security issue is always the most important concern of networked client-server application. On the putpose to build the secure group communication among of a group of client users and one server, in this paper, we will present a new password-based group key agreement protocol. Our protocol will meet simplicity, efficiency, and many desired security properties.展开更多
Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single regis...Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single registration and to protect the users from being tracked, various dynamic ID based multi-server authentication protocols have been proposed. Recently, Li et al. proposed an efficient and secure dynamic ID based authentication protocol using smart cards. They claimed that their protocol provides strong security. In this paper, we have demonstrated that Li et al.’s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.展开更多
Most of the password based authentication protocols make use of the single authentication server for user's authentication. User's verifier information stored on the single server is a main point of susceptibi...Most of the password based authentication protocols make use of the single authentication server for user's authentication. User's verifier information stored on the single server is a main point of susceptibility and remains an attractive target for the attacker. On the other hand, multi-server architecture based authentication protocols make it difficult for the attacker to find out any significant authentication information related to the legitimate users. In 2009, Liao and Wang proposed a dynamic identity based remote user authentication protocol for multi-server environment. However, we found that Liao and Wang's protocol is susceptible to malicious server attack and malicious user attack. This paper presents a novel dynamic identity based authentication protocol for multi-server architecture using smart cards that resolves the aforementioned flaws, while keeping the merits of Liao and Wang's protocol. It uses two-server paradigm by imposing different levels of trust upon the two servers and the user's verifier information is distributed between these two servers known as the service provider server and the control server. The proposed protocol is practical and computational efficient because only nonce, one-way hash function and XOR operations are used in its implementation. It provides a secure method to change the user's password without the server's help. In e-commerce, the number of servers providing the services to the user is usually more than one and hence secure authentication protocols for multi-server environment are required.展开更多
基金Supported by the National Natural Science Foun-dation of China (60572155) the National Natural Science Founda-tion of China for Distinguished Young Scholars (60225007)
文摘The security issue is always the most important concern of networked client-server application. On the putpose to build the secure group communication among of a group of client users and one server, in this paper, we will present a new password-based group key agreement protocol. Our protocol will meet simplicity, efficiency, and many desired security properties.
文摘Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single registration and to protect the users from being tracked, various dynamic ID based multi-server authentication protocols have been proposed. Recently, Li et al. proposed an efficient and secure dynamic ID based authentication protocol using smart cards. They claimed that their protocol provides strong security. In this paper, we have demonstrated that Li et al.’s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.
文摘Most of the password based authentication protocols make use of the single authentication server for user's authentication. User's verifier information stored on the single server is a main point of susceptibility and remains an attractive target for the attacker. On the other hand, multi-server architecture based authentication protocols make it difficult for the attacker to find out any significant authentication information related to the legitimate users. In 2009, Liao and Wang proposed a dynamic identity based remote user authentication protocol for multi-server environment. However, we found that Liao and Wang's protocol is susceptible to malicious server attack and malicious user attack. This paper presents a novel dynamic identity based authentication protocol for multi-server architecture using smart cards that resolves the aforementioned flaws, while keeping the merits of Liao and Wang's protocol. It uses two-server paradigm by imposing different levels of trust upon the two servers and the user's verifier information is distributed between these two servers known as the service provider server and the control server. The proposed protocol is practical and computational efficient because only nonce, one-way hash function and XOR operations are used in its implementation. It provides a secure method to change the user's password without the server's help. In e-commerce, the number of servers providing the services to the user is usually more than one and hence secure authentication protocols for multi-server environment are required.