Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contam...Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contaminated by molds and filamentous fungi involved in the degradation of hygienic and organoleptic or even toxicological quality. This study aims to determine the epidemiological profile of molds contaminating peanut pastes sold on the Central African market. Methodology: This was a cross-sectional study carried out from June to September 2023. Samples of peanut pastes sold on Central African market were taken and analyzed at the National Laboratory of Clinical Biology and Public Health using the conventional microbiology method according to ISO 7954 standards. The data obtained were collected in the ODK 2023.3.1 application and analyzed with the Epi Info 7 software. A multivariate analysis by logistic regression, Ficher’s exact test, and chi<sup>2</sup> at the 5% threshold (p Penicillium sp.;11.25% of Mucor sp.;10.63% of Aspergillus terrei;3.13% of Aspergillus niger;1.25% of Aspergillus medullans;28.13% of Aspergillus flavus;2.50% of Aspergillus fumigatus. Peanut pastes stored beyond three days were more contaminated (94.19%). Conclusion: The results of this study made it possible to highlight strains of mold that impact the hygienic and organoleptic quality of peanut pastes sold at the Central African market. Most of the isolated strains were the Aspergillus flavus species which is recognized by its toxigenic effects. This species is much more incriminated in the contamination of foodstuffs with the production of the toxin which causes underlying pulmonary pathologies in humans.展开更多
The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase com...The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.展开更多
The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydratio...The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydration law on the surface of high water-absorbing matrix. Hydration products were qualitatively and semi-quantitatively analyzed using XRD, TG-DSC-DTG, FTIR and SEM. The experimental results show that there is no enough water for 2 mm thick cement pastes to hydrate, because of rapid water absorption of matrix. Trace amounts of Ca (OH)2 was detected after three days hydration. With the prolongation of hydration time, the category and concentration of hydration products do not change. Compared with 2 mm thick cement pastes, 6 mm thick cement pastes and 10 mm thick cement pastes have lower dehydration rate and water loss. The humidity field of the cement paste show different changes within the same time. 6 mm thick cement paste and 10 mm thick cement pastes have longer time and more water to hydrate. Ca(OH)2 and ettringite were detected after 6 hours hydration and the concentrations of hydration products increased from 24 hours to 7 days.展开更多
AIM: This case-control study investigated the effects of kimchi,soybean paste, fresh vegetables,nonfermented alliums, nonfermented seafood, nonfermented soybean foods, and the genetic polymorphisms of some metabolic e...AIM: This case-control study investigated the effects of kimchi,soybean paste, fresh vegetables,nonfermented alliums, nonfermented seafood, nonfermented soybean foods, and the genetic polymorphisms of some metabolic enzymes on the risk of gastric cancer in Koreans. METHODS: We studied 421 gastric cancer patients and 632 age- and sex-matched controls. Subjects completed a structured questionnaire regarding their food intake pattern. Polymorphisms of cytochrome P450 1A1 (CYP1A1), cytochrome P450 2E1 (CYP2E1), glutathione S-transferase mu 1 (GSTM1),glutathione S-transferase theta 1 (65777) and aldehyde dehydrogenase 2 (ALDH2) were investigated. RESULTS: A decreased risk of gastric cancer was noted among people with high consumption of nonfermented alliums and nonfermented seafood. On the other hand, consumption of kimchi, and soybean pastes was associated with increased risk of gastric cancer. Individuals with the CYP1A1 Ile/Val or Val/Val genotype showed a significantly increased risk for gastric cancer. Increased intake of kimchi or soybean pastes was a significant risk factor for the CYP1A1 lie/lie, the CYP2E1 c1/c1,the GSTM1 non-null, the GSTT1 non-null, or the ALDH2 *1/*1 genotype.In addition, eating soybean pastes was associated with the increased risk of gastric cancer in individuals with the GSTM1 null type. Nonfermented alliums were significant in individuals with the CYP1A1 lie/lie, the CYP2E1 c1/c2 or c2/c2, the GSTT1 null, the GSTT1 non-null, or the ALDH2 *1/*2 or *2/*2 genotype,nonfermented seafood was those with the CYP1A1 lie/lie,the CYP2E1 c1/c1, the ALDH2 *1/*1 genotype or any type of GSTM1 or GSTT1. In homogeneity tests, the odds ratios of eating kimchi for gastric cancer according to the GSTM1 or 65777 genotype were not homogeneous. CONCLUSION: Kimchi, soybean pastes, and the CYP1A1 Ile/Val or Val/Val are risk factors,and nonfermented seafood and alliums are protective factors against gastric cancer in Koreans. Salt or some chemicals contained in kimchi and soybean pastes, which are increased by fermentation,would play important roles in the carcinogenesis of stomach cancer.Polymorphisms of the CYP1A1, CYP2E1, GSTM1, GSTT1, and ALDH2 genes could modify the effects of some environmental factors on the risk of gastric cancer.展开更多
The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance ...The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.展开更多
The effect of curing regime on the distribution ofAl3+ coordination in hardened cement pastes within 28 d were investigated by 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance(NMR) with deconvo...The effect of curing regime on the distribution ofAl3+ coordination in hardened cement pastes within 28 d were investigated by 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance(NMR) with deconvolution technique. The results indicate that the tetrahedral coordination Al3+ incorporated in C-S-H structure mainly originate from the AP+ incorporated in the alite and belite phases in the Portland cement. The curing regime of constant temperature of 20 ℃ is beneficial to the octahedral coordination Al3+ transforming to tetrahedral coordination AP+ incorporated in C-S-H structure. However, at curing regime of variable temperature, the temperature rising process is more advantageous to the transformation from ettringite to monosulphate, substitution of Al3+ for Si4+ in the C-S-H structure and the formation of the third aluminate hydrate (TAH) than that at constant temperature of 20 ℃. The high temperature of 60 ℃ in the holding temperature process promotes the decomposition of ettringite, and enhances the consumption of the Al3+ incorporated in C-S-H phases and the Al3+ in TAH for the monosulphate forming. The temperature decreasing promotes the transformation from monosulphate to ettringite, and increases the consumption of the Al3+ incorporated in C-S-H phases, and then increases the quantity of the TAH.展开更多
Four cellulose ethers(CEs) were compared for their effects on the pore structure of cement paste using mercury intrusion porosimetry. The experimental results show that the total pore volume and porosity of cement p...Four cellulose ethers(CEs) were compared for their effects on the pore structure of cement paste using mercury intrusion porosimetry. The experimental results show that the total pore volume and porosity of cement pastes containing the four cellulose ethers are significantly higher than that of the pure cement pastes and the total pore volume and porosity of cement pastes containing HEC(hydroxyethyl cellulose ether) or low viscosity cellulose ethers are low in four CEs. By changing the surface tension and viscosity of liquid phase and the strengthening of liquid film between air voids in cement pastes, CEs affect the formation, diameter evolution and upward movement of air voids and the pore structure of hardening cement paste. For the four CEs, the pore volume of cement pastes containing HEC or low viscosity cellulose ethers is higher with the diameter of 30-70 nm while lower with the diameter larger than 70 nm. CEs affect the pore structure of cement paste mainly through their effects on the evolvement of the small air voids into bigger ones when the pore diameter is below 70 nm and their effects on the entrainment and stabilization of air voids when the pore diameter is above 70 nm.展开更多
The effect of hydrothermal curing regimes on the hydration characteristics of slag cement containing different ratios of cement kiln dust has been studied. The samples for this study were combination of slag cement an...The effect of hydrothermal curing regimes on the hydration characteristics of slag cement containing different ratios of cement kiln dust has been studied. The samples for this study were combination of slag cement and cement kiln dust(5%-25%) without and with immobilization of 5% Cr(VI) by mass. Pastes were hydrothermally treated at 180 ℃ for different periods(2-24 h) in well closed stainless steel capsule. The hydration characteristics of these pastes were studied by measuring the compressive strength, bulk density, total porosity and combined water content. The findings were further supported by XRD and SEM analysis. The results indicated that the hydration characteristics of slag cement paste containing cement kiln dust 10% by mass were enhanced, especially at later ages(24 h) of hydration. That is due to the hydrothermal curing regimes of immobilized pastes accelerating hydration reactions and precipitation of Ca Cr O4, indicating that Cr(VI) can be solidified in the cement paste. This precipitation leads to pore formation in hydrated slag cement pastes.展开更多
Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FT...Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes.展开更多
Cement pastes containing 0%, 15%, 25% and 35% fly ash were prepared. After being cured for 90 days, all fly ash blended cement pastes were crushed and ground into powders with a particle size less than 80 μm and then...Cement pastes containing 0%, 15%, 25% and 35% fly ash were prepared. After being cured for 90 days, all fly ash blended cement pastes were crushed and ground into powders with a particle size less than 80 μm and then the powders were immersed in alkali solutions. Adsorption characteristics of K^+ and Na^+ ions in the pastes were investigated. Meawhile, the desorption characteristics of the adsorbed alklai ions and the inherent K^+ and Na^+ ions in the pastes were also investigated. Results showed that the contents of K^+ and Na^+ ions adsorbed by the pastes increased with increasing the substitution levels of fly ash and/or the concentrations of alkali solutions. Each paste was characterized by having the same adsorption capacity for K^+ or Na^+ that was essentially independent of alkali concentration. Adsorption mechanism of K^+ and Na^+ ions by the pastes is believed to be an effect of charge compensation of the C-S-H gel. Adsorption-desorption of the adsorbed K^+ and Na^+ ions in the pastes is reversible. The inherent K^+ and Na^+ ions in the pastes entered rapidly into the de-ionized water during the first 120 minutes, and then they were released at a relatively slow rate. A steady-state alkali partition was reached at about 720 minutes. Some K^+ and Na^+ ions which were originally "bound" by the hydration products were considered to be released into de-ionized water. Leaching tests showed that there was no significant effect of fly ash on the retaining of available alkalis in the pastes. A part of the released alkali ions exists in the pore solutions and the other part may be physically adsorbed by the hydration products.展开更多
In the present study,we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays.The gamma ray mass absorption coefficients of some coating pastes dop...In the present study,we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays.The gamma ray mass absorption coefficients of some coating pastes doped with antimony,boron and silver elements have been investigated.It has been determined that the gamma ray mass attenuation coefficient decreases rapidly as the energy of the gamma rays increases.It was determined that the doping of the main printing paste with silver and antimony considerably increased the gamma ray absorption capability of main paste.However,the doping of the paste with boron reduces the mass absorption of gamma rays.In particular,the gamma ray mass absorption power of the main paste doped with silver and antimony was determined to be useful in the gamma energy range from 80 to 140keV.This indicates that the newly doped textile material may be considered for radiation protection in the case of low-energy gamma rays.展开更多
The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resona...The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.展开更多
C3S pastes containing 0%,5%,10%,and 15%nano-SiO2 mixed with de-ionized water and alkali solutions were prepared.When C3S was completely hydrated,the pastes were ground into powders with a particle size less than 80μm...C3S pastes containing 0%,5%,10%,and 15%nano-SiO2 mixed with de-ionized water and alkali solutions were prepared.When C3S was completely hydrated,the pastes were ground into powders with a particle size less than 80μm.Adsorption and desorption characteristics of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water immersed in alkali solutions and those in C3S-nano SiO2 pastes mixed with alkali solutions,were investigated.Meawhile,the adsorption mechanisms of alkali ions were discussed.Results showed that the contents of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water increased with increasing substitution levels of nano-SiO2 and/or the initial alkali concentrations.In C3S-nano SiO2 pastes mixed with de-ionized water,each paste was characterized by having a fixed alkali-adsorption capacity that was essentially independent of alkali concentration.No obvious difference between the adsorption capacity of a given paste for K~+and Na~+was observed.Adsorption of alkali ions in the pastes is considered to be caused by surface force which is related to the BET specific surface area of the paste,and charge compensation of C-S-H gel,mainly by electrostatic interactions.In C3S-nano SiO2 pastes mixed with alkali solutions,alkali ions may enter the structure of C-S-H gel to replace a part of Ca^2+in the interlayer.This assumption is supported by the structural characterization of C-S-H gel using ^(29)Si MAS NMR.展开更多
The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which...The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al 2 O 3 substrates,and then sintering in a belt furnace.X-ray diffraction(XRD) and electron scanning microscopy(SEM) have been used to characterize the conductive particles.The resistors exhibit good refiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80Ω/□ to 600Ω/□.The resistors prepared are qualified for common use.展开更多
This study was conducted to observe the genotoxic effects of aqueous, methanol, hexane and dichloromethane extracts of “belacan” (shrimp paste) taken from three local districts in Melaka, Malaysia (Kelemak, Batang T...This study was conducted to observe the genotoxic effects of aqueous, methanol, hexane and dichloromethane extracts of “belacan” (shrimp paste) taken from three local districts in Melaka, Malaysia (Kelemak, Batang Tiga & Pantai Puteri). The umu test which was used as the screening test was conducted with and without the presence of metabolic activation system. Without the presence of metabolic activation system, aqueous extracts from Kelemak showed mutagenicity activity at 5 mg/ml with IR (Induction Rate) = 1.52 ± 0.57 and the methanol extracts showed mutagenic activities at 0.625 mg/ml and 5 mg/ml, which the IR was the highest at 5 mg/ml (2.08 ± 0.09). On the other hand, samples from Batang Tiga, Melaka showed mutagenic effects at all five concentrations for the dichloromethane extract, with IR = 2.09 ± 0.64 as the highest value at 1.25 mg/ml. Methanol extracts also showed positive results at 1.25 mg/ml and 2.5 mg/ml with IR = 1.70 ± 0.33 and IR = 2.12 ± 0.51 respectively, and aqueous extract at 0.625 mg/ml with IR = 1.54 ± 0.48 and 5 mg/ml with IR = 1.74 ± 0.50. There was a significant difference of the mean values of IR between the four different types of “belacan” extracts from Batang Tiga (p < 0.05). All four “belacan” extracts from Pantai Puteri, Melaka did not show any mutagenic effect. With the presence of metabolic activation system, there was no mutagenic effect observed in all four extracts from the three districts. Further study to analyze the contents in the food samples should be done in the future to determine the possible contents in the food samples that might be responsible for the mutagenic activities.展开更多
The Brazilian repository is being planned to be a near-surface one. In Brazil, the low and intermediate level radioactive wastes are immobilized using cement and bitumen for nuclear plant Angra 1 and Angra 2, respecti...The Brazilian repository is being planned to be a near-surface one. In Brazil, the low and intermediate level radioactive wastes are immobilized using cement and bitumen for nuclear plant Angra 1 and Angra 2, respectively. The major problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degrad^ttion in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70-90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to evaluate the properties of bitumen, cement pastes and mortars to be used in the encapsulation of bituminized wastes. The formulations of two pastes and two mortars were selected for the pilot scale tests. The laboratory and pilot scales results were very similar, indicating that any of these formulations could be used. However, the better formulation will be chosen after the leaching test results, because it is an essential parameter in the long-term repository performance.展开更多
The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three type...The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.展开更多
The rheologicalbehaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated.Influentialfactors including superplasticizer to cement ratio(Sp/C),water to cement ratio(w/c),...The rheologicalbehaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated.Influentialfactors including superplasticizer to cement ratio(Sp/C),water to cement ratio(w/c),temperature,and time were discussed.Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0,20 and 40 °C,respectively.Flowability and rheologicaltests on cement pastes were conducted to characterize the development of the rheologicalbehavior of fresh cement pastes over time.The exprimentalresults indicate that the initialflowability and flowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer.Higher temperature usually leads to a sharper drop in initialflowability and flowability retention.However,for the cement paste with high Sp/C or w/c,the flowability is slightly affected by temperature.Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned influentialfactors at low Sp/C.In the case of high Sp/C,yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature.Moreover,two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c,temperature and time are developed on the basis of the existing models,in which experimentalconstants can be extracted from a database created by the rheologicaltest results.展开更多
The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy,...The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy, and SEM-EDS analysis. Additionally, molecular dynamics simulation was performed to study the aluminum coordination status and interaction of sulfate ions in C-(A)-S-H gel. The results showed significant changes in the microstructural evolution of C-(A)-S-H gel in Portland cement paste. Sulfate attack has decalcifying and dealuminizing effect on C-(A)-S-H gel which is evident from increase in mean chain length(MCL) and decrease in Ca/Si & Al[4]/Si ratios of C-(A)-S-H gel. Additionally, Molecular dynamics simulation proves that Al[4] substituted in silicate chains of C-(A)-S-H gel is thermodynamically metastable, which may explain its migration from the silicate chains and transformation to Al[6], thus lowering the Al[4]/Si ratio of C-(A)-S-H gel. SO4^(2-)ions can carry the interfacial Ca^(2+) ions into the pore solution by the diffusion-absorption-desorption process, which unravels the mechanism of sulfate attack on C-(A)-S-H gel.展开更多
The influences of carboxymethyl starch used as stabilizer upon the stability of native cornstarchpolyvinyl alcohol blend pastes for warp sizing have been investigated. The effect of the modified starch on the paste st...The influences of carboxymethyl starch used as stabilizer upon the stability of native cornstarchpolyvinyl alcohol blend pastes for warp sizing have been investigated. The effect of the modified starch on the paste stability was evaluated in terms of the initial demixing time and the volume percentage of separated starch. The carboxymethyl starch with a series of different degrees of substitution was prepared in ethanol dispersion by varying the amount of monochloroacetic acid reacted with refined native cornstarch. The paste stability strongly depends on the modification extent and amount of carboxymethyl starch used, and on native starch content in the paste. Increase in the modification extent and/or the amount of the modified starch effectively retards the phase separation and reduces the separation extent of native cornstarch-polyvinyl alcohol blend pastes.Moreover, the mechanism and favorable modification extent of carboxymethyl starch for enhancing paste stability are also investigated and discussed.展开更多
文摘Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contaminated by molds and filamentous fungi involved in the degradation of hygienic and organoleptic or even toxicological quality. This study aims to determine the epidemiological profile of molds contaminating peanut pastes sold on the Central African market. Methodology: This was a cross-sectional study carried out from June to September 2023. Samples of peanut pastes sold on Central African market were taken and analyzed at the National Laboratory of Clinical Biology and Public Health using the conventional microbiology method according to ISO 7954 standards. The data obtained were collected in the ODK 2023.3.1 application and analyzed with the Epi Info 7 software. A multivariate analysis by logistic regression, Ficher’s exact test, and chi<sup>2</sup> at the 5% threshold (p Penicillium sp.;11.25% of Mucor sp.;10.63% of Aspergillus terrei;3.13% of Aspergillus niger;1.25% of Aspergillus medullans;28.13% of Aspergillus flavus;2.50% of Aspergillus fumigatus. Peanut pastes stored beyond three days were more contaminated (94.19%). Conclusion: The results of this study made it possible to highlight strains of mold that impact the hygienic and organoleptic quality of peanut pastes sold at the Central African market. Most of the isolated strains were the Aspergillus flavus species which is recognized by its toxigenic effects. This species is much more incriminated in the contamination of foodstuffs with the production of the toxin which causes underlying pulmonary pathologies in humans.
基金Funded by National Natural Science Foundation of China(Nos.51878003 and 51778513)Major Special Science and Technology Project of Hubei Province(No.2018AAA001)the National Basic Research Program of China(973 Program)(No.2015CB655101).
文摘The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.
基金Funded by the Youth Fund of National Natural Science Foundation of China (50902107)
文摘The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydration law on the surface of high water-absorbing matrix. Hydration products were qualitatively and semi-quantitatively analyzed using XRD, TG-DSC-DTG, FTIR and SEM. The experimental results show that there is no enough water for 2 mm thick cement pastes to hydrate, because of rapid water absorption of matrix. Trace amounts of Ca (OH)2 was detected after three days hydration. With the prolongation of hydration time, the category and concentration of hydration products do not change. Compared with 2 mm thick cement pastes, 6 mm thick cement pastes and 10 mm thick cement pastes have lower dehydration rate and water loss. The humidity field of the cement paste show different changes within the same time. 6 mm thick cement paste and 10 mm thick cement pastes have longer time and more water to hydrate. Ca(OH)2 and ettringite were detected after 6 hours hydration and the concentrations of hydration products increased from 24 hours to 7 days.
基金Supported by the Korea Science and Engineering Foundation, No.2000-2-219-001-2
文摘AIM: This case-control study investigated the effects of kimchi,soybean paste, fresh vegetables,nonfermented alliums, nonfermented seafood, nonfermented soybean foods, and the genetic polymorphisms of some metabolic enzymes on the risk of gastric cancer in Koreans. METHODS: We studied 421 gastric cancer patients and 632 age- and sex-matched controls. Subjects completed a structured questionnaire regarding their food intake pattern. Polymorphisms of cytochrome P450 1A1 (CYP1A1), cytochrome P450 2E1 (CYP2E1), glutathione S-transferase mu 1 (GSTM1),glutathione S-transferase theta 1 (65777) and aldehyde dehydrogenase 2 (ALDH2) were investigated. RESULTS: A decreased risk of gastric cancer was noted among people with high consumption of nonfermented alliums and nonfermented seafood. On the other hand, consumption of kimchi, and soybean pastes was associated with increased risk of gastric cancer. Individuals with the CYP1A1 Ile/Val or Val/Val genotype showed a significantly increased risk for gastric cancer. Increased intake of kimchi or soybean pastes was a significant risk factor for the CYP1A1 lie/lie, the CYP2E1 c1/c1,the GSTM1 non-null, the GSTT1 non-null, or the ALDH2 *1/*1 genotype.In addition, eating soybean pastes was associated with the increased risk of gastric cancer in individuals with the GSTM1 null type. Nonfermented alliums were significant in individuals with the CYP1A1 lie/lie, the CYP2E1 c1/c2 or c2/c2, the GSTT1 null, the GSTT1 non-null, or the ALDH2 *1/*2 or *2/*2 genotype,nonfermented seafood was those with the CYP1A1 lie/lie,the CYP2E1 c1/c1, the ALDH2 *1/*1 genotype or any type of GSTM1 or GSTT1. In homogeneity tests, the odds ratios of eating kimchi for gastric cancer according to the GSTM1 or 65777 genotype were not homogeneous. CONCLUSION: Kimchi, soybean pastes, and the CYP1A1 Ile/Val or Val/Val are risk factors,and nonfermented seafood and alliums are protective factors against gastric cancer in Koreans. Salt or some chemicals contained in kimchi and soybean pastes, which are increased by fermentation,would play important roles in the carcinogenesis of stomach cancer.Polymorphisms of the CYP1A1, CYP2E1, GSTM1, GSTT1, and ALDH2 genes could modify the effects of some environmental factors on the risk of gastric cancer.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623201)National Natural Science Foundation of China(No.51302070)
文摘The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623201)
文摘The effect of curing regime on the distribution ofAl3+ coordination in hardened cement pastes within 28 d were investigated by 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance(NMR) with deconvolution technique. The results indicate that the tetrahedral coordination Al3+ incorporated in C-S-H structure mainly originate from the AP+ incorporated in the alite and belite phases in the Portland cement. The curing regime of constant temperature of 20 ℃ is beneficial to the octahedral coordination Al3+ transforming to tetrahedral coordination AP+ incorporated in C-S-H structure. However, at curing regime of variable temperature, the temperature rising process is more advantageous to the transformation from ettringite to monosulphate, substitution of Al3+ for Si4+ in the C-S-H structure and the formation of the third aluminate hydrate (TAH) than that at constant temperature of 20 ℃. The high temperature of 60 ℃ in the holding temperature process promotes the decomposition of ettringite, and enhances the consumption of the Al3+ incorporated in C-S-H phases and the Al3+ in TAH for the monosulphate forming. The temperature decreasing promotes the transformation from monosulphate to ettringite, and increases the consumption of the Al3+ incorporated in C-S-H phases, and then increases the quantity of the TAH.
基金the National Natural Science Foundation of China(Nos.51461135001 and 51741804)the Natural Science Foundation of Hunan Province,China(No.2017JJ2066)the Scientific Research Project of Education Department,Hunan Province,China(No.17A054)
文摘Four cellulose ethers(CEs) were compared for their effects on the pore structure of cement paste using mercury intrusion porosimetry. The experimental results show that the total pore volume and porosity of cement pastes containing the four cellulose ethers are significantly higher than that of the pure cement pastes and the total pore volume and porosity of cement pastes containing HEC(hydroxyethyl cellulose ether) or low viscosity cellulose ethers are low in four CEs. By changing the surface tension and viscosity of liquid phase and the strengthening of liquid film between air voids in cement pastes, CEs affect the formation, diameter evolution and upward movement of air voids and the pore structure of hardening cement paste. For the four CEs, the pore volume of cement pastes containing HEC or low viscosity cellulose ethers is higher with the diameter of 30-70 nm while lower with the diameter larger than 70 nm. CEs affect the pore structure of cement paste mainly through their effects on the evolvement of the small air voids into bigger ones when the pore diameter is below 70 nm and their effects on the entrainment and stabilization of air voids when the pore diameter is above 70 nm.
文摘The effect of hydrothermal curing regimes on the hydration characteristics of slag cement containing different ratios of cement kiln dust has been studied. The samples for this study were combination of slag cement and cement kiln dust(5%-25%) without and with immobilization of 5% Cr(VI) by mass. Pastes were hydrothermally treated at 180 ℃ for different periods(2-24 h) in well closed stainless steel capsule. The hydration characteristics of these pastes were studied by measuring the compressive strength, bulk density, total porosity and combined water content. The findings were further supported by XRD and SEM analysis. The results indicated that the hydration characteristics of slag cement paste containing cement kiln dust 10% by mass were enhanced, especially at later ages(24 h) of hydration. That is due to the hydrothermal curing regimes of immobilized pastes accelerating hydration reactions and precipitation of Ca Cr O4, indicating that Cr(VI) can be solidified in the cement paste. This precipitation leads to pore formation in hydrated slag cement pastes.
基金Funded by the National Natural Science Foundation of China(No.50902107)National Science and Technology Supporting Program (No.2011BAJ04B02)the Fundamental Research Funds for the Central Universities (No.2011-YB-03)
文摘Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes.
基金Funded by the National Natural Science Foundation of China(No.51578004)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Cement pastes containing 0%, 15%, 25% and 35% fly ash were prepared. After being cured for 90 days, all fly ash blended cement pastes were crushed and ground into powders with a particle size less than 80 μm and then the powders were immersed in alkali solutions. Adsorption characteristics of K^+ and Na^+ ions in the pastes were investigated. Meawhile, the desorption characteristics of the adsorbed alklai ions and the inherent K^+ and Na^+ ions in the pastes were also investigated. Results showed that the contents of K^+ and Na^+ ions adsorbed by the pastes increased with increasing the substitution levels of fly ash and/or the concentrations of alkali solutions. Each paste was characterized by having the same adsorption capacity for K^+ or Na^+ that was essentially independent of alkali concentration. Adsorption mechanism of K^+ and Na^+ ions by the pastes is believed to be an effect of charge compensation of the C-S-H gel. Adsorption-desorption of the adsorbed K^+ and Na^+ ions in the pastes is reversible. The inherent K^+ and Na^+ ions in the pastes entered rapidly into the de-ionized water during the first 120 minutes, and then they were released at a relatively slow rate. A steady-state alkali partition was reached at about 720 minutes. Some K^+ and Na^+ ions which were originally "bound" by the hydration products were considered to be released into de-ionized water. Leaching tests showed that there was no significant effect of fly ash on the retaining of available alkalis in the pastes. A part of the released alkali ions exists in the pore solutions and the other part may be physically adsorbed by the hydration products.
基金supported by the Sinop University Scientific Research Projects Coordinator(No.GMYO-1901-16-14)。
文摘In the present study,we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays.The gamma ray mass absorption coefficients of some coating pastes doped with antimony,boron and silver elements have been investigated.It has been determined that the gamma ray mass attenuation coefficient decreases rapidly as the energy of the gamma rays increases.It was determined that the doping of the main printing paste with silver and antimony considerably increased the gamma ray absorption capability of main paste.However,the doping of the paste with boron reduces the mass absorption of gamma rays.In particular,the gamma ray mass absorption power of the main paste doped with silver and antimony was determined to be useful in the gamma energy range from 80 to 140keV.This indicates that the newly doped textile material may be considered for radiation protection in the case of low-energy gamma rays.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2015CB655101)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQZDJJ201504)+2 种基金State Key Laboratory of High Performance Civil Engineering Materials(No.2015CEM006)Natural Science Foundation of Hebei Province(No.E2016209283)Science and Technology Program of Hebei Province(No.16273706D)
文摘The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.
基金Funded by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘C3S pastes containing 0%,5%,10%,and 15%nano-SiO2 mixed with de-ionized water and alkali solutions were prepared.When C3S was completely hydrated,the pastes were ground into powders with a particle size less than 80μm.Adsorption and desorption characteristics of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water immersed in alkali solutions and those in C3S-nano SiO2 pastes mixed with alkali solutions,were investigated.Meawhile,the adsorption mechanisms of alkali ions were discussed.Results showed that the contents of alkali ions adsorbed by C3S-nano SiO2 pastes mixed with de-ionized water increased with increasing substitution levels of nano-SiO2 and/or the initial alkali concentrations.In C3S-nano SiO2 pastes mixed with de-ionized water,each paste was characterized by having a fixed alkali-adsorption capacity that was essentially independent of alkali concentration.No obvious difference between the adsorption capacity of a given paste for K~+and Na~+was observed.Adsorption of alkali ions in the pastes is considered to be caused by surface force which is related to the BET specific surface area of the paste,and charge compensation of C-S-H gel,mainly by electrostatic interactions.In C3S-nano SiO2 pastes mixed with alkali solutions,alkali ions may enter the structure of C-S-H gel to replace a part of Ca^2+in the interlayer.This assumption is supported by the structural characterization of C-S-H gel using ^(29)Si MAS NMR.
文摘The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al 2 O 3 substrates,and then sintering in a belt furnace.X-ray diffraction(XRD) and electron scanning microscopy(SEM) have been used to characterize the conductive particles.The resistors exhibit good refiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80Ω/□ to 600Ω/□.The resistors prepared are qualified for common use.
文摘This study was conducted to observe the genotoxic effects of aqueous, methanol, hexane and dichloromethane extracts of “belacan” (shrimp paste) taken from three local districts in Melaka, Malaysia (Kelemak, Batang Tiga & Pantai Puteri). The umu test which was used as the screening test was conducted with and without the presence of metabolic activation system. Without the presence of metabolic activation system, aqueous extracts from Kelemak showed mutagenicity activity at 5 mg/ml with IR (Induction Rate) = 1.52 ± 0.57 and the methanol extracts showed mutagenic activities at 0.625 mg/ml and 5 mg/ml, which the IR was the highest at 5 mg/ml (2.08 ± 0.09). On the other hand, samples from Batang Tiga, Melaka showed mutagenic effects at all five concentrations for the dichloromethane extract, with IR = 2.09 ± 0.64 as the highest value at 1.25 mg/ml. Methanol extracts also showed positive results at 1.25 mg/ml and 2.5 mg/ml with IR = 1.70 ± 0.33 and IR = 2.12 ± 0.51 respectively, and aqueous extract at 0.625 mg/ml with IR = 1.54 ± 0.48 and 5 mg/ml with IR = 1.74 ± 0.50. There was a significant difference of the mean values of IR between the four different types of “belacan” extracts from Batang Tiga (p < 0.05). All four “belacan” extracts from Pantai Puteri, Melaka did not show any mutagenic effect. With the presence of metabolic activation system, there was no mutagenic effect observed in all four extracts from the three districts. Further study to analyze the contents in the food samples should be done in the future to determine the possible contents in the food samples that might be responsible for the mutagenic activities.
文摘The Brazilian repository is being planned to be a near-surface one. In Brazil, the low and intermediate level radioactive wastes are immobilized using cement and bitumen for nuclear plant Angra 1 and Angra 2, respectively. The major problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degrad^ttion in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70-90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to evaluate the properties of bitumen, cement pastes and mortars to be used in the encapsulation of bituminized wastes. The formulations of two pastes and two mortars were selected for the pilot scale tests. The laboratory and pilot scales results were very similar, indicating that any of these formulations could be used. However, the better formulation will be chosen after the leaching test results, because it is an essential parameter in the long-term repository performance.
基金Funded by the Scientific Research Foundation of the Graduate School of Southeast University (YBJJ1113)the National Basic Research Program of China (No.2009CB623200)the National Natural Science Foundation of China (No.51178103)
文摘The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.
基金Funded by the National Natural Science Foundation of China(Nos.U1301241 and U1234211)the Postdoctoral Science Foundation of China(No.2015M580042)
文摘The rheologicalbehaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated.Influentialfactors including superplasticizer to cement ratio(Sp/C),water to cement ratio(w/c),temperature,and time were discussed.Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0,20 and 40 °C,respectively.Flowability and rheologicaltests on cement pastes were conducted to characterize the development of the rheologicalbehavior of fresh cement pastes over time.The exprimentalresults indicate that the initialflowability and flowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer.Higher temperature usually leads to a sharper drop in initialflowability and flowability retention.However,for the cement paste with high Sp/C or w/c,the flowability is slightly affected by temperature.Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned influentialfactors at low Sp/C.In the case of high Sp/C,yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature.Moreover,two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c,temperature and time are developed on the basis of the existing models,in which experimentalconstants can be extracted from a database created by the rheologicaltest results.
基金Funded by National Natural Science Foundation of China(Nos.51778513,51578004,51608004)the Major State Basic Research Development Program of China("973"Program)(No.2015CB655101)
文摘The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy, and SEM-EDS analysis. Additionally, molecular dynamics simulation was performed to study the aluminum coordination status and interaction of sulfate ions in C-(A)-S-H gel. The results showed significant changes in the microstructural evolution of C-(A)-S-H gel in Portland cement paste. Sulfate attack has decalcifying and dealuminizing effect on C-(A)-S-H gel which is evident from increase in mean chain length(MCL) and decrease in Ca/Si & Al[4]/Si ratios of C-(A)-S-H gel. Additionally, Molecular dynamics simulation proves that Al[4] substituted in silicate chains of C-(A)-S-H gel is thermodynamically metastable, which may explain its migration from the silicate chains and transformation to Al[6], thus lowering the Al[4]/Si ratio of C-(A)-S-H gel. SO4^(2-)ions can carry the interfacial Ca^(2+) ions into the pore solution by the diffusion-absorption-desorption process, which unravels the mechanism of sulfate attack on C-(A)-S-H gel.
基金It was financially supported by Science Research Foundation of Southern Yangtze University
文摘The influences of carboxymethyl starch used as stabilizer upon the stability of native cornstarchpolyvinyl alcohol blend pastes for warp sizing have been investigated. The effect of the modified starch on the paste stability was evaluated in terms of the initial demixing time and the volume percentage of separated starch. The carboxymethyl starch with a series of different degrees of substitution was prepared in ethanol dispersion by varying the amount of monochloroacetic acid reacted with refined native cornstarch. The paste stability strongly depends on the modification extent and amount of carboxymethyl starch used, and on native starch content in the paste. Increase in the modification extent and/or the amount of the modified starch effectively retards the phase separation and reduces the separation extent of native cornstarch-polyvinyl alcohol blend pastes.Moreover, the mechanism and favorable modification extent of carboxymethyl starch for enhancing paste stability are also investigated and discussed.