Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to id...Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to identify the strongest association paths between entities in a money laundering network. Based on two-tree Dijkstra and Priority'First-Search (PFS) algorithm, a modified algorithm is presented. To apply the algorithm, a network representation transformation is made first.展开更多
Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasonin...Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.展开更多
The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operationa...The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning.展开更多
It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- orie...It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- oriented technique,the principal critical path algorithm,propagating the critical value back to primary inputs along a single path,the principal critical path,and allowing multiple path sensitization if needed.Relationship among test patterns is also discussed to accelerate test generation.展开更多
This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles a...This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.展开更多
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo...Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.展开更多
The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method...The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained.展开更多
A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial...A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.展开更多
Adverse weather has serious implications for flight timeliness, as well as passenger and aircraft safety. This often implies that alternative flight paths have to be used by aircraft to avoid adverse weather. To reduc...Adverse weather has serious implications for flight timeliness, as well as passenger and aircraft safety. This often implies that alternative flight paths have to be used by aircraft to avoid adverse weather. To reduce the impact of such path re-routes, exact techniques such as artificial potential field model and Dijkstra’s algorithms have been proposed. However, such approaches are often unsuitable for real time scenarios involving large number of waypoints and constraints. This has led to the use of metaheuristic techniques that give sub-optimal solutions in good time. In this work, an improved genetic algorithm-based technique has been proposed. The algorithm used an improved mutation operator, reduced passenger inconvenience and considered the schedules of aircraft.展开更多
An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although ...An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.展开更多
Aiming at the disadvantages of the basic ant colony algorithm, this paper proposes an improved ant colony algorithm for robot global path planning. First, adjust the pheromone evaporation rate dynamically to enhance t...Aiming at the disadvantages of the basic ant colony algorithm, this paper proposes an improved ant colony algorithm for robot global path planning. First, adjust the pheromone evaporation rate dynamically to enhance the global search ability and convergence speed, and then modify the heuristic function to improve the state transition probabilities in order to find the optimal solution as quickly as possible;and finally change the pheromone update strategy to avoid premature by strengthening pheromone on the optimal path and limiting pheromone level. Simulation results verify the effectiveness of the improved algorithm.展开更多
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment...This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.展开更多
In order to overcome some defects of the traditional immune algorithm, the immune algorithm was improved for solving a path optimization problem in deep immune learning of a gene network. Firstly, the diversity of the...In order to overcome some defects of the traditional immune algorithm, the immune algorithm was improved for solving a path optimization problem in deep immune learning of a gene network. Firstly, the diversity of the solution population was enhanced in the evolution process by improving the memory cell processing method. Moreover, effective gene information was dynamically extracted from the genes of the excellent antibodies to make good vaccines in the process of immune evolution. Worse antibodies were optimized by vaccinating these antibodies, and the convergence of the immune algorithm to the optimal solution was improved. Finally, the feasibility of the improved immune algorithm was verified in the experimental simulation for solving the classic NP problem in deep immune learning of the gene network.展开更多
Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circu...Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circular arc spline interpolating method is proposed for the robot shape description,and a new two-stage position-selectable-updating particle swarm optimization(TPPSO)algorithm is put forward to solve this path planning problem.The algorithm decomposes the standard PSO velocity’s single-step updating formula into twostage multi-point updating,specifically adopting three points as candidates and selecting the best one as the updated position in the first half stage,and similarly taking seven points as candidates and selecting the best one as the final position in the last half stage.This scheme refines and widens each particle’s searching trajectory,increases the updating speed of the individual best,and improves the converging speed and precision.Aiming at the optimization objective to minimize the sum of all the motion displacements of every segmental points and all the axial stretching or contracting displacements of every segment,the TPPSO algorithm is used to solve the path planning problem.The detailed solution procedure is presented.Numerical examples of five path planning cases show that the proposed algorithm is simple,robust,and efficient.展开更多
In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path plannin...In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.展开更多
A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; s...A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.展开更多
Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search,...Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable.展开更多
Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation adopted, to...Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation adopted, to avoid the common defect of early convergence and converge faster than the standard genetic algorithms concludes from simulation results that the method is effective for robot path planning.展开更多
基金Supported bythe National Tenth Five-Year PlanforScientific and Technological Development of China (2001BA102A06-11)
文摘Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to identify the strongest association paths between entities in a money laundering network. Based on two-tree Dijkstra and Priority'First-Search (PFS) algorithm, a modified algorithm is presented. To apply the algorithm, a network representation transformation is made first.
文摘Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.
文摘The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning.
文摘It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- oriented technique,the principal critical path algorithm,propagating the critical value back to primary inputs along a single path,the principal critical path,and allowing multiple path sensitization if needed.Relationship among test patterns is also discussed to accelerate test generation.
基金the National Natural Science Foundation of China(No.51577112,51575328)Science and Technology Commission of Shanghai Municipality Project(No.16511108600).
文摘This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.
文摘Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches.
文摘The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained.
基金Supported by National Natural Science Foundation of P.R.China(50275150)National Research Foundation for the Doctoral Program of Higher Education of P.R.China(20040533035)
文摘A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.
文摘Adverse weather has serious implications for flight timeliness, as well as passenger and aircraft safety. This often implies that alternative flight paths have to be used by aircraft to avoid adverse weather. To reduce the impact of such path re-routes, exact techniques such as artificial potential field model and Dijkstra’s algorithms have been proposed. However, such approaches are often unsuitable for real time scenarios involving large number of waypoints and constraints. This has led to the use of metaheuristic techniques that give sub-optimal solutions in good time. In this work, an improved genetic algorithm-based technique has been proposed. The algorithm used an improved mutation operator, reduced passenger inconvenience and considered the schedules of aircraft.
文摘An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.
文摘Aiming at the disadvantages of the basic ant colony algorithm, this paper proposes an improved ant colony algorithm for robot global path planning. First, adjust the pheromone evaporation rate dynamically to enhance the global search ability and convergence speed, and then modify the heuristic function to improve the state transition probabilities in order to find the optimal solution as quickly as possible;and finally change the pheromone update strategy to avoid premature by strengthening pheromone on the optimal path and limiting pheromone level. Simulation results verify the effectiveness of the improved algorithm.
基金supported by the Ministry of Science and Technology of Thailand
文摘This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.
文摘In order to overcome some defects of the traditional immune algorithm, the immune algorithm was improved for solving a path optimization problem in deep immune learning of a gene network. Firstly, the diversity of the solution population was enhanced in the evolution process by improving the memory cell processing method. Moreover, effective gene information was dynamically extracted from the genes of the excellent antibodies to make good vaccines in the process of immune evolution. Worse antibodies were optimized by vaccinating these antibodies, and the convergence of the immune algorithm to the optimal solution was improved. Finally, the feasibility of the improved immune algorithm was verified in the experimental simulation for solving the classic NP problem in deep immune learning of the gene network.
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.DL09CB02)the Heilongjiang Province Natural Science Fund(Grant No.E201013)
文摘Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circular arc spline interpolating method is proposed for the robot shape description,and a new two-stage position-selectable-updating particle swarm optimization(TPPSO)algorithm is put forward to solve this path planning problem.The algorithm decomposes the standard PSO velocity’s single-step updating formula into twostage multi-point updating,specifically adopting three points as candidates and selecting the best one as the updated position in the first half stage,and similarly taking seven points as candidates and selecting the best one as the final position in the last half stage.This scheme refines and widens each particle’s searching trajectory,increases the updating speed of the individual best,and improves the converging speed and precision.Aiming at the optimization objective to minimize the sum of all the motion displacements of every segmental points and all the axial stretching or contracting displacements of every segment,the TPPSO algorithm is used to solve the path planning problem.The detailed solution procedure is presented.Numerical examples of five path planning cases show that the proposed algorithm is simple,robust,and efficient.
基金Supported by the National Natural Science Foundation of China(No.61233014,61305130,61503153)the National High Technology Research and Development Program of China(No.2015AA042201)+1 种基金the Shandong Provincial Natural Science Foundation(No.ZR2013FQ003,ZR2013EEM027)China Postdoctoral Science Foundation(No.2013M541912)
文摘In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.
文摘A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.
文摘Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable.
文摘Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation adopted, to avoid the common defect of early convergence and converge faster than the standard genetic algorithms concludes from simulation results that the method is effective for robot path planning.