In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not...In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not coincide with unloading paths has been found. Numerical results are given for cylindrically curved cross-ply panels subjected to uniform uniaxial compression under two types of boundary conditions. The influence of the number of layers, the panels curvature and the initial imperfection on the postbuckling paths is discussed.展开更多
Based on the heterogeneity of fault plane strength,the macro rupture process of a fault plane can be treated as the rupture accumulation process of local micro-elements in the fault surface.Assuming that the strength ...Based on the heterogeneity of fault plane strength,the macro rupture process of a fault plane can be treated as the rupture accumulation process of local micro-elements in the fault surface.Assuming that the strength of the local micro-elements follows the Weibull probability distribution,the macro-fault constitutive relationship of the complete load-deformation process is derived from a statistical mechanics viewpoint.Applying a one-dimensional earthquake mechanics model and using far-field displacement a as the control variable,the problem of earthquake instability is investigated by employing the stability theory.The results show that the system stiffness ratio(stiffness ratio of fault to surroun-ding rock) β is the important parameter that affects the occurrence of earthquakes.Earthquake instability occurs only when β < 1,and the sudden stress jump appears at the displacement turning point of the equilibrium path curve.The expression of three important parameters for earthquakes(fault half-dislocation distance after earthquake,earthquake stress drop and elastic energy release) is also given.When β≥1,the earthquake does not occur and the fault only slips slowly without an earthquake.展开更多
In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit followin...In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit following, the curved path to be followed is defined in terms of the arc-length parameter, which can be straight lines, orbits, B-splines or any other curves provided that they are smooth. The proposed path following control algorithm, named by VF-SMC, is combining the vector field(VF) strategy with the sliding mode control(SMC) method. It is proven that the designed algorithm guarantees the tracking errors to be a bounded ball in the presence of winds, with the aid of the Lyapunov method and the BIBO stability. The algorithm is validated both in Matlab-based simulations and high-fidelity semi-physical simulations. In Matlab-based simulations, the proposed algorithm is verified for straight lines, orbits and B-splines to show its wide usage in different curves.The high-fidelity semi-physical simulation system is composed of actual autopilot controller, ground station and X-Plane flight simulator in-loop. In semi-physical simulations, the proposed algorithm is verified for B-spline path following under various gain parameters and wind conditions thoroughly.All experiments show the accuracy in curved path following and the excellent robustness to wind disturbances of the proposed algorithm.展开更多
文摘In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not coincide with unloading paths has been found. Numerical results are given for cylindrically curved cross-ply panels subjected to uniform uniaxial compression under two types of boundary conditions. The influence of the number of layers, the panels curvature and the initial imperfection on the postbuckling paths is discussed.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund of Institute of Geophysics,China Earthquake Administration(DQJB08B21)
文摘Based on the heterogeneity of fault plane strength,the macro rupture process of a fault plane can be treated as the rupture accumulation process of local micro-elements in the fault surface.Assuming that the strength of the local micro-elements follows the Weibull probability distribution,the macro-fault constitutive relationship of the complete load-deformation process is derived from a statistical mechanics viewpoint.Applying a one-dimensional earthquake mechanics model and using far-field displacement a as the control variable,the problem of earthquake instability is investigated by employing the stability theory.The results show that the system stiffness ratio(stiffness ratio of fault to surroun-ding rock) β is the important parameter that affects the occurrence of earthquakes.Earthquake instability occurs only when β < 1,and the sudden stress jump appears at the displacement turning point of the equilibrium path curve.The expression of three important parameters for earthquakes(fault half-dislocation distance after earthquake,earthquake stress drop and elastic energy release) is also given.When β≥1,the earthquake does not occur and the fault only slips slowly without an earthquake.
基金supported by the National Natural Science Foundation of China under Grant No.61403406
文摘In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit following, the curved path to be followed is defined in terms of the arc-length parameter, which can be straight lines, orbits, B-splines or any other curves provided that they are smooth. The proposed path following control algorithm, named by VF-SMC, is combining the vector field(VF) strategy with the sliding mode control(SMC) method. It is proven that the designed algorithm guarantees the tracking errors to be a bounded ball in the presence of winds, with the aid of the Lyapunov method and the BIBO stability. The algorithm is validated both in Matlab-based simulations and high-fidelity semi-physical simulations. In Matlab-based simulations, the proposed algorithm is verified for straight lines, orbits and B-splines to show its wide usage in different curves.The high-fidelity semi-physical simulation system is composed of actual autopilot controller, ground station and X-Plane flight simulator in-loop. In semi-physical simulations, the proposed algorithm is verified for B-spline path following under various gain parameters and wind conditions thoroughly.All experiments show the accuracy in curved path following and the excellent robustness to wind disturbances of the proposed algorithm.