For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence a...For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.展开更多
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an...To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.展开更多
Aiming at the disadvantages of the basic ant colony algorithm, this paper proposes an improved ant colony algorithm for robot global path planning. First, adjust the pheromone evaporation rate dynamically to enhance t...Aiming at the disadvantages of the basic ant colony algorithm, this paper proposes an improved ant colony algorithm for robot global path planning. First, adjust the pheromone evaporation rate dynamically to enhance the global search ability and convergence speed, and then modify the heuristic function to improve the state transition probabilities in order to find the optimal solution as quickly as possible;and finally change the pheromone update strategy to avoid premature by strengthening pheromone on the optimal path and limiting pheromone level. Simulation results verify the effectiveness of the improved algorithm.展开更多
Path planning is one of the most important problems in the design of a mobile robot.A novel approach called generalized Voronoi diagrams(GVD)may deal with this matter.First,a method was introduced to normalize the obs...Path planning is one of the most important problems in the design of a mobile robot.A novel approach called generalized Voronoi diagrams(GVD)may deal with this matter.First,a method was introduced to normalize the obstacles and present efficient techniques for generating GVDs.Then a best path searching algorithm was presented.Examples implemented were given to indicate the availability of the mentioned algorithms.The approaches in this paper can also be used in applications including visualization,spatial data manipulation,etc.展开更多
Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article...Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpolation-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost paths.展开更多
A new approach on cutter path generation for plane milling is proposed. The cutter feed status at the position of each grid mesh can be determined by using a specific algorithm consisting of data pro- cessing and some...A new approach on cutter path generation for plane milling is proposed. The cutter feed status at the position of each grid mesh can be determined by using a specific algorithm consisting of data pro- cessing and some heuristic rules. From the cutter feed status and the coordinates of the grid meshes, the cutter path for milling plane can be generated.展开更多
We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of...We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic.展开更多
With the characteristics of diversity, randomness, concurrency and decomposability, tasks in manufacturing field are very complicated, and so manufacturing grid (MG) should have considerable flexibility to deal with t...With the characteristics of diversity, randomness, concurrency and decomposability, tasks in manufacturing field are very complicated, and so manufacturing grid (MG) should have considerable flexibility to deal with this problem. With the definition of node and arc, MG structure is converted into a small-world network. Given construction cost constraint, the problem of shortest task waiting time is transformed into the constrained optimization problem, and a corresponding ?exibility analysis model based on average path length (APL) is proposed, and the premise of arc-length and node-distance are defined. The results of application example show that the analysis model is effiective.展开更多
基金National Natural Science Foundation of China(No.61373110)the Science-Technology Project of Wuhan,China(No.2014010101010005)
文摘For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61261007,61002049)the Key Program of Yunnan Natural Science Foundation(Grant No.2013FA008)
文摘To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.
文摘Aiming at the disadvantages of the basic ant colony algorithm, this paper proposes an improved ant colony algorithm for robot global path planning. First, adjust the pheromone evaporation rate dynamically to enhance the global search ability and convergence speed, and then modify the heuristic function to improve the state transition probabilities in order to find the optimal solution as quickly as possible;and finally change the pheromone update strategy to avoid premature by strengthening pheromone on the optimal path and limiting pheromone level. Simulation results verify the effectiveness of the improved algorithm.
基金supported by Beijing Natural Science Foundation (contact no.4062010)
文摘Path planning is one of the most important problems in the design of a mobile robot.A novel approach called generalized Voronoi diagrams(GVD)may deal with this matter.First,a method was introduced to normalize the obstacles and present efficient techniques for generating GVDs.Then a best path searching algorithm was presented.Examples implemented were given to indicate the availability of the mentioned algorithms.The approaches in this paper can also be used in applications including visualization,spatial data manipulation,etc.
文摘Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpolation-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost paths.
文摘A new approach on cutter path generation for plane milling is proposed. The cutter feed status at the position of each grid mesh can be determined by using a specific algorithm consisting of data pro- cessing and some heuristic rules. From the cutter feed status and the coordinates of the grid meshes, the cutter path for milling plane can be generated.
文摘We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic.
基金supported by the National Natural Science Foundation of China (Grant No.50805089)the Science Foundation of Science and Technology Commission of Shanghai Municipality (Grant Nos.08DZ1123402,08DZ1124502)
文摘With the characteristics of diversity, randomness, concurrency and decomposability, tasks in manufacturing field are very complicated, and so manufacturing grid (MG) should have considerable flexibility to deal with this problem. With the definition of node and arc, MG structure is converted into a small-world network. Given construction cost constraint, the problem of shortest task waiting time is transformed into the constrained optimization problem, and a corresponding ?exibility analysis model based on average path length (APL) is proposed, and the premise of arc-length and node-distance are defined. The results of application example show that the analysis model is effiective.