Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack...Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model.展开更多
Network information mining is the study of the network topology,which may answer a large number of applicationbased questions towards the structural evolution and the function of a real system.The question can be rela...Network information mining is the study of the network topology,which may answer a large number of applicationbased questions towards the structural evolution and the function of a real system.The question can be related to how the real system evolves or how individuals interact with each other in social networks.Although the evolution of the real system may seem to be found regularly,capturing patterns on the whole process of evolution is not trivial.Link prediction is one of the most important technologies in network information mining,which can help us understand the evolution mechanism of real-life network.Link prediction aims to uncover missing links or quantify the likelihood of the emergence of nonexistent links from known network structures.Currently,widely existing methods of link prediction almost focus on short-path networks that usually have a myriad of close triangular structures.However,these algorithms on highly sparse or longpath networks have poor performance.Here,we propose a new index that is associated with the principles of structural equivalence and shortest path length(SESPL)to estimate the likelihood of link existence in long-path networks.Through a test of 548 real networks,we find that SESPL is more effective and efficient than other similarity-based predictors in long-path networks.Meanwhile,we also exploit the performance of SESPL predictor and of embedding-based approaches via machine learning techniques.The results show that the performance of SESPL can achieve a gain of 44.09%over GraphWave and 7.93%over Node2vec.Finally,according to the matrix of maximal information coefficient(MIC)between all the similarity-based predictors,SESPL is a new independent feature in the space of traditional similarity features.展开更多
The natural language to SQL(NL2SQL)task is an emerging research area that aims to transform a natural language with a given database into an SQL query.The earlier approaches were to process the input into a heterogene...The natural language to SQL(NL2SQL)task is an emerging research area that aims to transform a natural language with a given database into an SQL query.The earlier approaches were to process the input into a heterogeneous graph.However,previous models failed to distinguish the types of multi-hop connections of the heterogeneous graph,which tended to ignore crucial semantic path information.To this end,a two-layer attention network is presented to focus on essential neighbor nodes and mine enlightening semantic paths for feature encoding.The weighted edge is introduced for schema linking to connect the nodes with semantic similarity.In the decoding phase,a rule-based pruning strategy is offered to refine the generated SQL queries.From the experimental results,the approach is shown to learn a good encoding representation and decode the representation to generate results with practical meaning.展开更多
Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to id...Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to identify the strongest association paths between entities in a money laundering network. Based on two-tree Dijkstra and Priority'First-Search (PFS) algorithm, a modified algorithm is presented. To apply the algorithm, a network representation transformation is made first.展开更多
This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at eve...This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China(No.61876144).
文摘Knowledge graph(KG) link prediction aims to address the problem of missing multiple valid triples in KGs. Existing approaches either struggle to efficiently model the message passing process of multi-hop paths or lack transparency of model prediction principles. In this paper,a new graph convolutional network path semantic-aware graph convolution network(PSGCN) is proposed to achieve modeling the semantic information of multi-hop paths. PSGCN first uses a random walk strategy to obtain all-hop paths in KGs,then captures the semantics of the paths by Word2Sec and long shortterm memory(LSTM) models,and finally converts them into a potential representation for the graph convolution network(GCN) messaging process. PSGCN combines path-based inference methods and graph neural networks to achieve better interpretability and scalability. In addition,to ensure the robustness of the model,the value of the path thresholdKis experimented on the FB15K-237 and WN18RR datasets,and the final results prove the effectiveness of the model.
基金supported by the National Natural Science Foundation of China(Grant Nos.61773091 and 62173065)the Industry-University-Research Innovation Fund for Chinese Universities(Grant No.2021ALA03016)+2 种基金the Fund for University Innovation Research Group of Chongqing(Grant No.CXQT21005)the National Social Science Foundation of China(Grant No.20CTQ029)the Fundamental Research Funds for the Central Universities(Grant No.SWU119062).
文摘Network information mining is the study of the network topology,which may answer a large number of applicationbased questions towards the structural evolution and the function of a real system.The question can be related to how the real system evolves or how individuals interact with each other in social networks.Although the evolution of the real system may seem to be found regularly,capturing patterns on the whole process of evolution is not trivial.Link prediction is one of the most important technologies in network information mining,which can help us understand the evolution mechanism of real-life network.Link prediction aims to uncover missing links or quantify the likelihood of the emergence of nonexistent links from known network structures.Currently,widely existing methods of link prediction almost focus on short-path networks that usually have a myriad of close triangular structures.However,these algorithms on highly sparse or longpath networks have poor performance.Here,we propose a new index that is associated with the principles of structural equivalence and shortest path length(SESPL)to estimate the likelihood of link existence in long-path networks.Through a test of 548 real networks,we find that SESPL is more effective and efficient than other similarity-based predictors in long-path networks.Meanwhile,we also exploit the performance of SESPL predictor and of embedding-based approaches via machine learning techniques.The results show that the performance of SESPL can achieve a gain of 44.09%over GraphWave and 7.93%over Node2vec.Finally,according to the matrix of maximal information coefficient(MIC)between all the similarity-based predictors,SESPL is a new independent feature in the space of traditional similarity features.
文摘The natural language to SQL(NL2SQL)task is an emerging research area that aims to transform a natural language with a given database into an SQL query.The earlier approaches were to process the input into a heterogeneous graph.However,previous models failed to distinguish the types of multi-hop connections of the heterogeneous graph,which tended to ignore crucial semantic path information.To this end,a two-layer attention network is presented to focus on essential neighbor nodes and mine enlightening semantic paths for feature encoding.The weighted edge is introduced for schema linking to connect the nodes with semantic similarity.In the decoding phase,a rule-based pruning strategy is offered to refine the generated SQL queries.From the experimental results,the approach is shown to learn a good encoding representation and decode the representation to generate results with practical meaning.
基金Supported bythe National Tenth Five-Year PlanforScientific and Technological Development of China (2001BA102A06-11)
文摘Effective link analysis techniques are needed to help law enforcement and intelligence agencies fight money laundering. This paper presents a link analysis technique that uses a modified shortest-path algorithms to identify the strongest association paths between entities in a money laundering network. Based on two-tree Dijkstra and Priority'First-Search (PFS) algorithm, a modified algorithm is presented. To apply the algorithm, a network representation transformation is made first.
文摘This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method.