针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲...针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。展开更多
针对跳点搜索(jump point search,JPS)算法在寻路过程中所存在的路径拐点多、中间搜索跳点数多、寻找跳点的过程中扩展节点数多和寻路时间较长等问题,提出改进双向动态JPS算法。改进算法动态定义正、反扩展方向上的目标点,动态定义启发...针对跳点搜索(jump point search,JPS)算法在寻路过程中所存在的路径拐点多、中间搜索跳点数多、寻找跳点的过程中扩展节点数多和寻路时间较长等问题,提出改进双向动态JPS算法。改进算法动态定义正、反扩展方向上的目标点,动态定义启发函数,并利用动态约束椭圆对算法的扩展区域加以限制,以区分椭圆内、外区域的扩展优先级。在算法从起点和目标点两个方向上分别向对方进行扩展的过程中,以寻找到的新的代价最小点为新椭圆的焦点,椭圆的方位和约束区域也随之动态调整。仿真结果表明,经过优化改进的双向动态JPS算法在一般地图中有一定的表现,在障碍物较少且目标点距离起点较近的室内环境地图中表现尤为良好。展开更多
文摘针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。
文摘针对跳点搜索(jump point search,JPS)算法在寻路过程中所存在的路径拐点多、中间搜索跳点数多、寻找跳点的过程中扩展节点数多和寻路时间较长等问题,提出改进双向动态JPS算法。改进算法动态定义正、反扩展方向上的目标点,动态定义启发函数,并利用动态约束椭圆对算法的扩展区域加以限制,以区分椭圆内、外区域的扩展优先级。在算法从起点和目标点两个方向上分别向对方进行扩展的过程中,以寻找到的新的代价最小点为新椭圆的焦点,椭圆的方位和约束区域也随之动态调整。仿真结果表明,经过优化改进的双向动态JPS算法在一般地图中有一定的表现,在障碍物较少且目标点距离起点较近的室内环境地图中表现尤为良好。