Objective:To evaluate the prevalence of multidrug resistant Staphylococcus aureus(S.aureus) in dairy products.Methods:Isolation and identification of S.aureus were performed in 3 dairybased food products.The isolates ...Objective:To evaluate the prevalence of multidrug resistant Staphylococcus aureus(S.aureus) in dairy products.Methods:Isolation and identification of S.aureus were performed in 3 dairybased food products.The isolates were tested for their susceptibility to 5 different common antimicrobial drugs.Results:Of 50 samples examined,5(10%) were contaminated with 5. aureus.Subsequently,the 5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs(methicillin,vancomycin,kanamycin,chloramphenicol and tetracycline).Sample 29 showed resistance to methicillin and vancomycin.Sample 18 showed intermediate response to tetracycline.The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus.Therefore,it enables us to develop preventive strategies to avoid the emergence of new strains of resistant S.aureus.展开更多
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte...AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.展开更多
BACKGROUND In this study,recent trends in the distribution and drug resistance of pathogenic bacteria isolated from patients treated at a burn ward between 2006 and 2019 were investigated.AIM To develop more effective...BACKGROUND In this study,recent trends in the distribution and drug resistance of pathogenic bacteria isolated from patients treated at a burn ward between 2006 and 2019 were investigated.AIM To develop more effective clinical strategies and techniques for the prevention and treatment of bacterial infections in burn patients.METHODS Clinical samples with positive bacteria were collected from patients at the burn ward in Beijing Jishuitan Hospital in China between January 2006 and December 2019.The samples were retrospectively analyzed,the distribution of pathogenic bacteria was determined,and the trends and changes in bacterial drug resistance during different period were assessed.Drug resistance in several main pathogenic bacteria from 2006 to 2011 and from 2012 to 2019 was comparatively summarized and analyzed.RESULTS Samples from 17119 patients were collected and analyzed from 2006 to 2019.Surprisingly,a total of 7960 strains of different pathogenic bacteria were isolated at this hospital.Among these bacteria,87.98%(7003/7960)of the strains were isolated from burn wounds,and only 1.34%(107/7960)were isolated from the blood of patients.In addition,49.70%(3956/7960)were identified as Grampositive bacteria,48.13%(3831/7960)were Gram-negative bacteria,and the remaining 2.17%(173/7960)were classified as fungi or other pathogens.Importantly,Staphylococcus aureus(21.68%),Pseudomonas aeruginosa(14.23%),and Staphylococcus epidermidis (9.61%) were the top three pathogens most frequentlyisolated from patients.CONCLUSION In patients treated at the burn ward in this hospital from 2006 to 2019,Staphylococcus aureus and Pseudomonas aeruginosa were the predominant clinicalpathogens responsible for bacterial infections. The circumstantial detection anddetailed monitoring of the intensity and growth of different pathogenic bacteria inclinical patients as well as tests of drug sensitivity during burn recovery areparticularly important to provide guidelines for the application of antibiotics andother related drugs. Careful collection and correct, standard culture of bacterialspecimens are also crucial to improve the efficiency of bacterial infectiondetection. Effective monitoring and timely clinical treatment in patients may helpreduce the possibility and rate of infection as well as alleviate the effects of drugresistance among patients in burn centers.展开更多
Objective: To understand distribution and drug resistance of pathogenic bacteria from a specialized cancer hospital in 2013 in order to provide a basis for rational clinical antimicrobial agents. Methods: Pathogenic...Objective: To understand distribution and drug resistance of pathogenic bacteria from a specialized cancer hospital in 2013 in order to provide a basis for rational clinical antimicrobial agents. Methods: Pathogenic bacteria identification and drug sensitivity tests were performed with a VITEK 2 compact automatic identification system and data were analyzed using WHONET5.6 software.Results: Of the 1,378 strains tested, 980 were Gram-negative bacilli, accounting for 71.1%, in which Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa were the dominant strains. We found 328 Gram-positive coccus, accounting for 23.8%, in which the amount of Staphylococcus aureus was the highest. We identified 46 fungi, accounting for 4.1%. According to the departmental distribution within the hospital, the surgical departments isolated the major strains, accounting for 49.7%. According to disease types, lung cancer, intestinal cancer and esophagus cancer were the top three, accounting for 20.9%, 17.3% and 14.2%, respectively. No strains were resistant to imipenem, ertapenem or vancomycin.Conclusions: Pathogenic bacteria isolated from the specialized cancer hospital have different resistance rates compared to commonly used antimicrobial agents; therefore antimicrobial agents to reduce the morbidity and mortality of infections should be used.展开更多
Background: Bloodstream infection is a serious infectious disease. In recent years, the drug resistance of pathogenic bacteria to commonly used anti-infective drugs has been widely concerned, which also makes the trea...Background: Bloodstream infection is a serious infectious disease. In recent years, the drug resistance of pathogenic bacteria to commonly used anti-infective drugs has been widely concerned, which also makes the treatment of bloodstream infection face severe challenges. Objective: To explore the distribution characteristics of blood culture-positive pathogens and the resistance to antibacterial drugs, so as to provide clinicians with accurate laboratory evidence, so as to guide clinicians to rationally apply antibiotics, improve clinical treatment effects, and reduce the emergence of drug-resistant strains. Methods: From January 2019 to June 2022, 2287 positive blood culture specimens of patients in Guangzhou Women and Children’s Medical Center were retrospectively analyzed, and the proportion of different pathogenic bacteria, the distribution of pathogenic bacteria in different departments, and the multi-drug resistance of different pathogenic bacteria were counted. Results: Among the 2287 blood culture positive samples, 1560 strains (68.20%) of gram-positive bacteria and 727 strains (31.80%) of gram-negative bacteria were strained. The top three departments in the distribution of pathogenic bacteria were pediatric intensive care unit (600 strains), pediatric internal medicine (514 strains), and pediatric emergency comprehensive ward (400 strains). The pathogens with high detection rates were: Staphylococcus epidermidis (24.09%), Staphylococcus humans (23.74%), Escherichia coli (13.21%) and Klebsiella pneumoniae (8.71%). The pathogens with high multi-drug resistance rates were: Streptococcus pneumoniae (93%), Staphylococcus epidermidis (83.76%), Enterobacter cloacae (75.61%) and Staphylococcus humans (62.43%). Conclusion: In our hospital, gram-positive bacteria were the main pathogenic bacteria in the blood culture of children patients. The children’s intensive care unit was the department with the largest distribution of pathogenic bacteria, and the multiple drug resistance rate of Streptococcus pneumoniae was the highest.展开更多
Introduction: Antimicrobial resistance is the most important health problems currently. Antibiotic prophylaxis to prevent bacterial co-infections in hospitalized COVID-19 patients, and lack of surveillance were associ...Introduction: Antimicrobial resistance is the most important health problems currently. Antibiotic prophylaxis to prevent bacterial co-infections in hospitalized COVID-19 patients, and lack of surveillance were associated with antimicrobial resistance. ESKAPE pathogens consisting of E. faecium, S. aureus, K. pneumoniae, A. baumanii, P. aeruginosa and Enterobacter spp. are associated with healthcare-associated infections. Patients and Methods: This descriptive, retrospective, longitudinal study aims to describe the resistance rates of bloodstream infection due to ESKAPE pathogens from patients admitted in Siloam Hospital Karawaci, before and during COVID-19 pandemic (January 1<sup>st</sup>, 2019 until December 31<sup>st</sup>, 2022). Out of 296 ESKAPE pathogens collected from blood samples, S. aureus was the most frequent species, followed by K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp., and E. faecium. Results: Resistance rates of E. faecium were alarmingly high from 2019 until 2021, but in 2022 no sample was found. Resistance rates of S. aureus and MRSA decreased from 2019 until 2021 and then increased again in 2022 while for K. pneumoniae it peaked in 2020 and reached the lowest in 2022. Resistance pattern of A. baumanii was not favorable from 2019 until 2021, but decreased dramatically in 2022. Resistance pattern of P. aeruginosa was quite variable in 2021 and 2022 while for Enterobacter spp. it was variable in 2020 to 2022. Conclusion: The COVID-19 pandemic affected the antimicrobial resistance pattern of ESKAPE pathogens in Banten province, Indonesia. Resistance rates increased as the pandemic peaked in 2020 to 2021, and decreased as the pandemic resolves in 2022.展开更多
Objective:To understand the pathogenic bacteria isolated from patients and their drug resistance changes in general ICU of the Affiliated Hospital of Hebei University,so as to provide reference for appropriate selecti...Objective:To understand the pathogenic bacteria isolated from patients and their drug resistance changes in general ICU of the Affiliated Hospital of Hebei University,so as to provide reference for appropriate selection of antibiotics in clinical practice.Methods:A retrospective investigation was conducted to analyze the bacteriological distribution and drug resistance of nosocomial pathogens isolated from the specimens of hospitalized patients in the comprehensive ICU of the hospital from 2019 to 2021.The US technology BD Phoenix 100 automatic bacterial identification analyzer was used for bacterial identification of the pathogen samples,disk diffusion method was used for drug susceptibility test,and SPSS 22.0 software was used to analyze the trend of drug resistance.Results:A total of 970 strains of nosocomial pathogens were detected in the three years.The main pathogens were Acinetobacter baumannii(133 strains,13.71%),Klebsiella pneumoniae(106 strains,10.93%),Pseudomonas aeruginosa(83 strains,8.56%),Escherichia coli(76 strains,7.84%)and Enterococcus faecium(69 strains,7.11%).The resistance rate of Acinetobacter baumannii to antibiotics was high.Klebsiella pneumoniae,Pseudomonas aeruginosa and Escherichia coli had low resistance rates to carbapenems.The situation of bacterial drug resistance is still serious.Conclusion:The drug resistance of pathogenic bacteria collected from Class III Grade A Hospital’s patients to antibiotics was generally high.Therefore,clinical departments should strengthen the inspection of specimens of infection and drug sensitivity test in order to grasp the resistance mechanisms and drug resistance of pathogenic bacteria changes,and select appropriate antimicrobial agents according to the test results.Besides,the formation of drug-resistant strains also needs to be prevented,and the treatment of patients with severe infection needs to be improved.展开更多
Objective:To Isolate,purify,characterize,and evaluate the bioaclive compounds from the sponge-derived fungus Penicillium sp.FF001 and to elucidate its structure.Methods:The fungal strain FF001 with an interesting bioa...Objective:To Isolate,purify,characterize,and evaluate the bioaclive compounds from the sponge-derived fungus Penicillium sp.FF001 and to elucidate its structure.Methods:The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp.Based on conidiophores aggregation,conidia development and mycelia morphological characteristics,the isolate FF001 was classically identified as a Penicillium sp.The bioactive compound was identified using various spectral analysis of UV,high resolution electrospray ionization mass spectra,1H and 13C NMR spectral data.Further minimum inhibitory concentrations(MICs)assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound.Results:Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp.by different chromatographic methods led the isolation of an antibacterial,anticryptococcal and cytotoxic active compound,which was identified as citrinin(1).Further,citrinin(1)is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus(S.aureus),rifampicin-resistant 5.aureus,wild type S.aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90,0.97,1.95 and7.81μg/mL,respectively.Further citrinin(1)displayed significant activity against the pathogenic yeast Cryptococcus neoformans(MIC 3.90μg/mL),and exhibited cytotoxicity against brine shrimp larvae LD_(50)of 96μg/mL.Conclusions:Citrinin(1)is reported from sponge associated Penicillium sp.from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae,which indicated that sponge associated Penicillium spp.are promising sources of natural bioactive metabolites.展开更多
Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote grow...Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots,threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.展开更多
Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, ...Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, fleroxacin, piperacillin, cefotaxime, cefoperazone/sulbactam, ceftazidime, cefoperazone and doxycycline. Transferable drug resistance plasmid carrying rates of these clinical isolates were also studied. On the basis of the in vitro activities, 52.63%(30/57) of the isolated strains of P. aeruginosa were susceptible to antimicrobial agents selected (except doxycycline), 41.67%(15/36) of the isolated strains of Acinetobacter were susceptible to 11 antimicrobial agents. The sensitivity rate of P.aeruginosa and Acinetobacter to antimicrobial agents selected was 70% or greater to all except doxycycline. Furthermore, the sensitivity rate of P.aeruginosa to amikacin ciprofloxacin, ceftazidime, cefoperazone, cefoperazone/sulbactam, and that of Acinetobacter to cefoperazone/sulbactam, amikacin was more than 90%,among them amikacin, cefoperazone/sulbactam being the most effective. Plasmid analysis showed that 15.79%(9/57) P.aeruginosa strains and 13.89%(5/36) Acinetobacter strains carried plasmid. Conjugative plasmid carrying rates of P. aeruginosa strains and Acinetobacter strains were 7.02%(4/57), 13.89%(5/36), respectively. Conjugative plasmid didn′t play an important role in the formation and dissemination of drug resistance of P. aeruginosa and Acinetobacter.展开更多
A laboratory information system (LIS) established in a microbiology department has the potential to play an important role in the quality of microbiology data such as culture of blood, urine, stool, pus swab samples e...A laboratory information system (LIS) established in a microbiology department has the potential to play an important role in the quality of microbiology data such as culture of blood, urine, stool, pus swab samples etc. Such data could be effectively utilised to measure the burden of antimicrobial resistance among patients presented to various hospitals and clinics with an episode of an infectious illness of bacterial origin. A variety of clinical and epidemiological investigations are conducted using culture data and the presence of an electronic system such as LIS enhances such investigations and improves the reliability of measures of antimicrobial resistance owing to improved data quality as well as completeness of data gathered as opposed to paper based system. Therefore to improve surveillance of antimicrobial resistance in South Africa, there is a need to reinforce the functionality of the LIS in both public and private microbiology laboratories as this will help to improve internal quality control methodologies.展开更多
Multi drug resistance microorganism is considered to be one of the major health problems. The aim of this study was to determine antibiotic susceptibility pattern of bacterial pathogens of surgical site infection. A t...Multi drug resistance microorganism is considered to be one of the major health problems. The aim of this study was to determine antibiotic susceptibility pattern of bacterial pathogens of surgical site infection. A total 250 samples were included, out of which 62.4% showed significant bacterial growth. Gram negative bacteria were 85.25% and gram positive bacteria were 14.75%;among them 65.38% of the total isolates were multi drug resistance (MDR). The age group between 31 - 40 found the highest number of isolates 22.4%. Among gram negative bacilli, the highest production of MDR was found in Acinetobacter spp. followed by Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. In gram positive cocci, the highest production of MDR was found in Staphylococcus aureus. Acinetobacter spp. was found highly susceptible to amikacin and gentamycin 20.1% followed by ofloxacin and ciprofloxacin 18.6% and 16.2% respectively. Staphylococcus aureus showed 100% sensitive to clindamycin whereas penicillin showed 100% resistance followed by amoxycillin (93.75%). Amikacine and clindamycin were drugs of choice for gram negative and gram positive bacteria respectively. This study showed that alarming increase of infections was caused by multi drug resistance bacterial organisms. It increases length of stay and may produce lasting sequelae and requires extra resources for investigations, management and nursing care. Surveillance of surgical site infection is a useful tool to demonstrate the magnitude of the problem and find out appropriate preventive methods.展开更多
Because of their high efficiency, antibiotics have long been the primary treatment for infections, but the rise of drug-resistant pathogens has become a therapeutic concern. Nanoparticles, as novel biomaterials, are c...Because of their high efficiency, antibiotics have long been the primary treatment for infections, but the rise of drug-resistant pathogens has become a therapeutic concern. Nanoparticles, as novel biomaterials, are currently gaining global attention to combat them. Drug-resistant diseases may need the use of nanoparticles as a viable therapeutic option. By altering target locations and enzymes, decreasing cell permeability, inactivating enzymes, and increasing efflux by overexpressing efflux pumps, they can bypass conventional resistance mechanisms. Therefore, understanding how metal and metal oxide nanoparticles affect microorganisms that are resistant to antimicrobial drugs is the main objective of this review. Accordingly, the uses of metal and metal oxide nanoparticles in the fight against drug-resistant diseases appear promising. However, their mechanism of action, dose, and possible long-term effects require special attention and future research. Furthermore, repeated use of silver nanoparticles may cause gram-negative microorganisms to acquire resistance, necessitating additional study.展开更多
Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being dis...Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.展开更多
<b><span style="font-family:Verdana;">Introduction:</span></b><span style="font-family:""><span style="font-family:Verdana;"> In the last two deca...<b><span style="font-family:Verdana;">Introduction:</span></b><span style="font-family:""><span style="font-family:Verdana;"> In the last two decades, the treatment of enteric infections has been complicated by the emergence of antimicrobial resistant strains. Occurrence of multidrug resistant Extended Spectrum Beta Lactamase (ESBL) producing </span><i><span style="font-family:Verdana;">Enterobactaeraceae</span></i><span style="font-family:Verdana;"> pose</span></span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> the greatest risk to public health by raising morbidity and mortality by six folds in developing countries. The present study aims to determine the antibiotics resistance patterns of selected</span><i><span style="font-family:Verdana;"> Entero</span><span style="font-family:Verdana;">bacteriaceae</span></i><span style="font-family:Verdana;"> isolated from commercial poultry production systems i</span><span style="font-family:Verdana;">n Kiamb</span><span><span style="font-family:Verdana;">u County. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A laboratory based cross-sectional study was co</span></span><span style="font-family:Verdana;">nducted in six purposively selected Sub-Counties of Kiambu County from October 2020, to February 2021. A total of 437 fecal samples were collected from each household. The antibiotic susceptibility testing using disk diffusion method w</span></span><span style="font-family:Verdana;">as</span><span style="font-family:""><span style="font-family:Verdana;"> used against </span><i><span style="font-family:Verdana;">E.</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">coli</span></i><span style="font-family:""><span style="font-family:Verdana;">;</span><i><span style="font-family:Verdana;"> Salmonella spps.</span></i><span style="font-family:Verdana;">;</span><i><span style="font-family:Verdana;"> Shigella spps.</span></i><span style="font-family:Verdana;">;</span><i> </i><span style="font-family:Verdana;">and</span><i><span style="font-family:Verdana;"> Klebsiella spps. </span></i><span style="font-family:Verdana;">which were isolated and identified th</span></span><span style="font-family:Verdana;">r</span><span style="font-family:""><span style="font-family:Verdana;">ough standard biochemical. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Out of 437 fecal and stool samples collected, 591 isolates were recovered with </span><i><span style="font-family:Verdana;">E.</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">coli</span></i><span style="font-family:""><span style="font-family:Verdana;"> (48.9%) being the most frequently identified, followed by </span><i><span style="font-family:Verdana;">Shigella spps.</span></i><span style="font-family:Verdana;"> (18.8%), </span><i><span style="font-family:Verdana;">Salmonella spps.</span></i><span style="font-family:Verdana;"> (18.3%), and </span><i><span style="font-family:Verdana;">Klebsiella spps.</span></i><span style="font-family:Verdana;"> (14.0%). The study shows there was high prevalence of multiple resistance among isolates especially to Sulfamethoxazole (79%), Trimethoprim (71%), and Tetracyclines (59%), correspondingly. Additionally, the isolates showed </span></span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">highest rate of suscep</span><span style="font-family:Verdana;">tibility against Cefuroxime (94%), Gentamicin (93%), Ceftriaxo</span><span style="font-family:Verdana;">ne (91%), Cefepime (89%), Cefotaxime (85%), Ceftazidime (84%), and Chloramphenicol (77%), respectively. </span><b><span style="font-family:Verdana;">Discussion:</span></b><span style="font-family:Verdana;"> Our study indicates that both fecal and stool materials from commercial poultry and humans can be reservoir of multi-drug resistance enteric’s which can be a potential route</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">of transmission of resistance genes, which pose a great risk to public health of Kiambu Residence.展开更多
Background:The uroculturome indicates the profile of culturable microbes inhabiting the urinary tract,and it is often required to do a urine culture to find an effective antimicrobial to treat urinary tract infections...Background:The uroculturome indicates the profile of culturable microbes inhabiting the urinary tract,and it is often required to do a urine culture to find an effective antimicrobial to treat urinary tract infections(UTIs).Methods:This study targeted to understand the profile of culturable pathogens in the urine of apparently healthy(128)and humans with clinical UTIs(161)and their antimicrobial susceptibility.All the urine samples were analyzed to quantify microbial load and determine the diversity and antimicrobial susceptibility of microbes following standard microbiological methods.Results:In urine samples from UTI cases,microbial counts were 1.2×10^(4)±6.02×10^(3) colony-forming units(cfu)/mL,while in urine samples from apparently healthy humans,the average count was 3.33±1.34×10^(3) cfu/mL.In eight samples(six from UTI cases and two from apparently healthy people,Candida(C.albicans 3,C.catenulata 1,C.krusei 1,C.tropicalis 1,C.parapsiplosis 1,C.gulliermondii 1)and Rhizopus species(1)were detected.Candida krusei was detected only in a single urine sample from a healthy person and C.albicans was detected both in urine of healthy and clinical UTI cases.Gram-positive(G+ve)bacteria were more commonly(Odds ratio,1.98;CI99,1.01-3.87)detected in urine samples of apparently healthy humans,and Gram-negative(G−ve)bacteria(Odds ratio,2.74;CI99,1.44-5.23)in urines of UTI cases.From urine samples of 161 UTI cases,a total of 90 different types of microbes were detected and,73 samples had only a single type of bacteria.In contrast,49,29,3,4,1,and 2 samples had 2,3,4,5,6 and 7 types of bacteria,respectively.The most common bacteria detected in urine of UTI cases was Escherichia coli(52 samples),in 20 cases as the single type of bacteria,other 34 types of bacteria were detected in pure form in 53 cases.From 128 urine samples of apparently healthy people,88 types of microbes were detected either singly or in association with others,from 64 urine samples only a single type of bacteria was detected while 34,13,3,11,2 and 1 sample yielded 2,3,4,5,6 and seven types of microbes,respectively.In the urine of apparently healthy humans too,E.coli was the most common bacteria,(10 samples)followed by Staphylococcus haemolyticus(9),S.intermedius(5),and S.aureus(5),and similar types of bacteria also dominated in cases of mixed occurrence,E.coli was detected in 26,S.aureus in 22 and S.haemolyticus in 19 urine samples,respectively.G+ve bacteria isolated from urine samples’irrespective of health status were more often(P<0.01)resistant than G−ve bacteria to ajowan oil,holy basil oil,cinnamaldehyde,and cinnamon oil,but more susceptible to sandalwood oil(P<0.01).However,for antibiotics,G+ve were more often susceptible than G−ve bacteria to cephalosporins,doxycycline,and nitrofurantoin.Conclusion:The study concludes that to understand the role of good and bad bacteria in the urinary tract microbiome more targeted studies are needed to discern the isolates at the pathotype level.Further,the study suggests the use of antibiotics by observing good antibiotic stewardship following antibiotic susceptibility testing only.展开更多
Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacteria...Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacterial pathogen was carried out on a total of 722 patients that were admitted to the ICU of Fatmawati Hospital Jakarta Indonesia during January 2009 to March 2010. All bacteria were identified by standard microbiologic methods,and(heir antibiotic susceptibility testing was performed using disk diffusion method.Results:Specimens were collected from 385 patients who were given antimicrobial treatment,of which 249(64.68%) were cultured positive and 136(35.32%) were negative.The most predominant isolate was Pseudomonas aeruginosa(P.aeruginosa)(26.5%) followed by Klebsiella pneumoniae(K.pneumoniae)(15.3%) and Staphylococcus epidermidis(14.9%).P.aeruginosa isolates showed high rate of resistance to cephalexin(95.3%),cefotaxime(64.1%),and ceftriaxone(60.9%).Amikacin was the most effective(84.4%) antibiotic against P.aeruginosa followed by imipenem(81.2%),and meropenem(75.0%).K.pneumoniae showed resistance to cephalexin(86.5%),ceftriaxone(75.7%),ceftazidime(73.0%),cefpirome(73.0%) and cefotaxime(67.9%),respectively.Conclusions:Most bacteria isolated from ICU of Fatmawati Hospital Jakarta Indonesia were resistant to the third generation of cephalosporins,and quinolone antibiotics.Regular surveillance of antibiotic susceptibility pallerns is very important for setting orders to guide the clinician in choosing empirical or directed therapy of infected patients.展开更多
In this study, an antimicrobial component(RTCI) was purified from the skin of Rana temporaria chensinensis, David. Antimicrobial activities of RTCI against clinical multi-drug resistant bacterial strains, including ...In this study, an antimicrobial component(RTCI) was purified from the skin of Rana temporaria chensinensis, David. Antimicrobial activities of RTCI against clinical multi-drug resistant bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureaus, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus fae-calis, and Proteus mirabilis, were measured in vitro by means of minimal inhibitory concentration and time-kill studies. The results indicate that RTCI could inhibit the growth of these bacteria at a proper concentration and suggest that RT-CI shows a better antimicrobial activity to Gram-negative bacterial strains than to Gram-positive bacterial strains.展开更多
Streptococcus pneumonia infection is important cause of morbidity and mortality. This study was conducted to find out the prevalence and antimicrobial susceptibility pattern of Streptococcus pneumoniae isolates at gen...Streptococcus pneumonia infection is important cause of morbidity and mortality. This study was conducted to find out the prevalence and antimicrobial susceptibility pattern of Streptococcus pneumoniae isolates at general hospitalin the central region of Japan from December 2013 to February 2014. Streptococcus pneumoniae was identified by standard laboratory procedure. Antimicrobial susceptibility testing was performed by micro dilution assay according to CLSI recommendation. One hundred fifty-three Streptococcus pneumoniae were isolated among which 80 (52.2%) were males and 73 (47.8%) were females. Nasal discharge (134%/87.6%) contributed more than other biological materials. The age incidence of (0 - 1) years, (1 - 10) years, (11 - 40) years, (41 - 60) years and >60 years age groups were 26 (17.0%), 110 (71.9%), 3 (2.0%), 10 (6.5%), and 4 (2.6%) respectively. Positive samples were received mostly from the pediatrics (137%/89.5%), respiratory medicine (12%/7.8%) and lowest from gastroenterology (1%/0.6%) and neurology (1/ 0.6%) department. Vancomycin and rifampicin were the most active antibiotics with 100% susceptibility rates. The next best were levofloxacin, penicillin G and ceftriaxone. Our study revealed that 82 Streptococcus pneumonia isolates had multidrug resistant ability (53.6%). Streptococcus pneumoniae infection spreads among community easily and inappropriate use of antibiotics contributes to their resistance. Continuous antimicrobial susceptible surveys are essential to guide policy on the adequate use of antibiotics to reduce the morbidity and mortality and reduce the emergency of antimicrobial resistance.展开更多
文摘Objective:To evaluate the prevalence of multidrug resistant Staphylococcus aureus(S.aureus) in dairy products.Methods:Isolation and identification of S.aureus were performed in 3 dairybased food products.The isolates were tested for their susceptibility to 5 different common antimicrobial drugs.Results:Of 50 samples examined,5(10%) were contaminated with 5. aureus.Subsequently,the 5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs(methicillin,vancomycin,kanamycin,chloramphenicol and tetracycline).Sample 29 showed resistance to methicillin and vancomycin.Sample 18 showed intermediate response to tetracycline.The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus.Therefore,it enables us to develop preventive strategies to avoid the emergence of new strains of resistant S.aureus.
文摘AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.
文摘BACKGROUND In this study,recent trends in the distribution and drug resistance of pathogenic bacteria isolated from patients treated at a burn ward between 2006 and 2019 were investigated.AIM To develop more effective clinical strategies and techniques for the prevention and treatment of bacterial infections in burn patients.METHODS Clinical samples with positive bacteria were collected from patients at the burn ward in Beijing Jishuitan Hospital in China between January 2006 and December 2019.The samples were retrospectively analyzed,the distribution of pathogenic bacteria was determined,and the trends and changes in bacterial drug resistance during different period were assessed.Drug resistance in several main pathogenic bacteria from 2006 to 2011 and from 2012 to 2019 was comparatively summarized and analyzed.RESULTS Samples from 17119 patients were collected and analyzed from 2006 to 2019.Surprisingly,a total of 7960 strains of different pathogenic bacteria were isolated at this hospital.Among these bacteria,87.98%(7003/7960)of the strains were isolated from burn wounds,and only 1.34%(107/7960)were isolated from the blood of patients.In addition,49.70%(3956/7960)were identified as Grampositive bacteria,48.13%(3831/7960)were Gram-negative bacteria,and the remaining 2.17%(173/7960)were classified as fungi or other pathogens.Importantly,Staphylococcus aureus(21.68%),Pseudomonas aeruginosa(14.23%),and Staphylococcus epidermidis (9.61%) were the top three pathogens most frequentlyisolated from patients.CONCLUSION In patients treated at the burn ward in this hospital from 2006 to 2019,Staphylococcus aureus and Pseudomonas aeruginosa were the predominant clinicalpathogens responsible for bacterial infections. The circumstantial detection anddetailed monitoring of the intensity and growth of different pathogenic bacteria inclinical patients as well as tests of drug sensitivity during burn recovery areparticularly important to provide guidelines for the application of antibiotics andother related drugs. Careful collection and correct, standard culture of bacterialspecimens are also crucial to improve the efficiency of bacterial infectiondetection. Effective monitoring and timely clinical treatment in patients may helpreduce the possibility and rate of infection as well as alleviate the effects of drugresistance among patients in burn centers.
文摘Objective: To understand distribution and drug resistance of pathogenic bacteria from a specialized cancer hospital in 2013 in order to provide a basis for rational clinical antimicrobial agents. Methods: Pathogenic bacteria identification and drug sensitivity tests were performed with a VITEK 2 compact automatic identification system and data were analyzed using WHONET5.6 software.Results: Of the 1,378 strains tested, 980 were Gram-negative bacilli, accounting for 71.1%, in which Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa were the dominant strains. We found 328 Gram-positive coccus, accounting for 23.8%, in which the amount of Staphylococcus aureus was the highest. We identified 46 fungi, accounting for 4.1%. According to the departmental distribution within the hospital, the surgical departments isolated the major strains, accounting for 49.7%. According to disease types, lung cancer, intestinal cancer and esophagus cancer were the top three, accounting for 20.9%, 17.3% and 14.2%, respectively. No strains were resistant to imipenem, ertapenem or vancomycin.Conclusions: Pathogenic bacteria isolated from the specialized cancer hospital have different resistance rates compared to commonly used antimicrobial agents; therefore antimicrobial agents to reduce the morbidity and mortality of infections should be used.
文摘Background: Bloodstream infection is a serious infectious disease. In recent years, the drug resistance of pathogenic bacteria to commonly used anti-infective drugs has been widely concerned, which also makes the treatment of bloodstream infection face severe challenges. Objective: To explore the distribution characteristics of blood culture-positive pathogens and the resistance to antibacterial drugs, so as to provide clinicians with accurate laboratory evidence, so as to guide clinicians to rationally apply antibiotics, improve clinical treatment effects, and reduce the emergence of drug-resistant strains. Methods: From January 2019 to June 2022, 2287 positive blood culture specimens of patients in Guangzhou Women and Children’s Medical Center were retrospectively analyzed, and the proportion of different pathogenic bacteria, the distribution of pathogenic bacteria in different departments, and the multi-drug resistance of different pathogenic bacteria were counted. Results: Among the 2287 blood culture positive samples, 1560 strains (68.20%) of gram-positive bacteria and 727 strains (31.80%) of gram-negative bacteria were strained. The top three departments in the distribution of pathogenic bacteria were pediatric intensive care unit (600 strains), pediatric internal medicine (514 strains), and pediatric emergency comprehensive ward (400 strains). The pathogens with high detection rates were: Staphylococcus epidermidis (24.09%), Staphylococcus humans (23.74%), Escherichia coli (13.21%) and Klebsiella pneumoniae (8.71%). The pathogens with high multi-drug resistance rates were: Streptococcus pneumoniae (93%), Staphylococcus epidermidis (83.76%), Enterobacter cloacae (75.61%) and Staphylococcus humans (62.43%). Conclusion: In our hospital, gram-positive bacteria were the main pathogenic bacteria in the blood culture of children patients. The children’s intensive care unit was the department with the largest distribution of pathogenic bacteria, and the multiple drug resistance rate of Streptococcus pneumoniae was the highest.
文摘Introduction: Antimicrobial resistance is the most important health problems currently. Antibiotic prophylaxis to prevent bacterial co-infections in hospitalized COVID-19 patients, and lack of surveillance were associated with antimicrobial resistance. ESKAPE pathogens consisting of E. faecium, S. aureus, K. pneumoniae, A. baumanii, P. aeruginosa and Enterobacter spp. are associated with healthcare-associated infections. Patients and Methods: This descriptive, retrospective, longitudinal study aims to describe the resistance rates of bloodstream infection due to ESKAPE pathogens from patients admitted in Siloam Hospital Karawaci, before and during COVID-19 pandemic (January 1<sup>st</sup>, 2019 until December 31<sup>st</sup>, 2022). Out of 296 ESKAPE pathogens collected from blood samples, S. aureus was the most frequent species, followed by K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp., and E. faecium. Results: Resistance rates of E. faecium were alarmingly high from 2019 until 2021, but in 2022 no sample was found. Resistance rates of S. aureus and MRSA decreased from 2019 until 2021 and then increased again in 2022 while for K. pneumoniae it peaked in 2020 and reached the lowest in 2022. Resistance pattern of A. baumanii was not favorable from 2019 until 2021, but decreased dramatically in 2022. Resistance pattern of P. aeruginosa was quite variable in 2021 and 2022 while for Enterobacter spp. it was variable in 2020 to 2022. Conclusion: The COVID-19 pandemic affected the antimicrobial resistance pattern of ESKAPE pathogens in Banten province, Indonesia. Resistance rates increased as the pandemic peaked in 2020 to 2021, and decreased as the pandemic resolves in 2022.
基金In-Hospital Fund Project of Affiliated Hospital of Hebei University:Analysis of Nosocomial Infection in Intensive Care Unit(2019Q030)。
文摘Objective:To understand the pathogenic bacteria isolated from patients and their drug resistance changes in general ICU of the Affiliated Hospital of Hebei University,so as to provide reference for appropriate selection of antibiotics in clinical practice.Methods:A retrospective investigation was conducted to analyze the bacteriological distribution and drug resistance of nosocomial pathogens isolated from the specimens of hospitalized patients in the comprehensive ICU of the hospital from 2019 to 2021.The US technology BD Phoenix 100 automatic bacterial identification analyzer was used for bacterial identification of the pathogen samples,disk diffusion method was used for drug susceptibility test,and SPSS 22.0 software was used to analyze the trend of drug resistance.Results:A total of 970 strains of nosocomial pathogens were detected in the three years.The main pathogens were Acinetobacter baumannii(133 strains,13.71%),Klebsiella pneumoniae(106 strains,10.93%),Pseudomonas aeruginosa(83 strains,8.56%),Escherichia coli(76 strains,7.84%)and Enterococcus faecium(69 strains,7.11%).The resistance rate of Acinetobacter baumannii to antibiotics was high.Klebsiella pneumoniae,Pseudomonas aeruginosa and Escherichia coli had low resistance rates to carbapenems.The situation of bacterial drug resistance is still serious.Conclusion:The drug resistance of pathogenic bacteria collected from Class III Grade A Hospital’s patients to antibiotics was generally high.Therefore,clinical departments should strengthen the inspection of specimens of infection and drug sensitivity test in order to grasp the resistance mechanisms and drug resistance of pathogenic bacteria changes,and select appropriate antimicrobial agents according to the test results.Besides,the formation of drug-resistant strains also needs to be prevented,and the treatment of patients with severe infection needs to be improved.
基金Supported by the U.S.National Institutes of Health's International Cooperative Biodiversity Groups program(Grant No.NIH ICBG U01-TW007401)
文摘Objective:To Isolate,purify,characterize,and evaluate the bioaclive compounds from the sponge-derived fungus Penicillium sp.FF001 and to elucidate its structure.Methods:The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp.Based on conidiophores aggregation,conidia development and mycelia morphological characteristics,the isolate FF001 was classically identified as a Penicillium sp.The bioactive compound was identified using various spectral analysis of UV,high resolution electrospray ionization mass spectra,1H and 13C NMR spectral data.Further minimum inhibitory concentrations(MICs)assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound.Results:Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp.by different chromatographic methods led the isolation of an antibacterial,anticryptococcal and cytotoxic active compound,which was identified as citrinin(1).Further,citrinin(1)is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus(S.aureus),rifampicin-resistant 5.aureus,wild type S.aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90,0.97,1.95 and7.81μg/mL,respectively.Further citrinin(1)displayed significant activity against the pathogenic yeast Cryptococcus neoformans(MIC 3.90μg/mL),and exhibited cytotoxicity against brine shrimp larvae LD_(50)of 96μg/mL.Conclusions:Citrinin(1)is reported from sponge associated Penicillium sp.from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae,which indicated that sponge associated Penicillium spp.are promising sources of natural bioactive metabolites.
基金supported by an NSERC Postdoctoral Fellowshipsupported by the Beef Cattle Research Council BCRC–Agriculture and Agri-Food Canada beef cluster
文摘Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots,threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.
文摘Antimicrobial susceptibility test was performed on 57 clinical isolates of P. aeruginosa and 36 clinical isolates of Acinetobacter with 11 antimicrobial agents including getamicin, amikacin, ciprofloxacin, ofloxacin, fleroxacin, piperacillin, cefotaxime, cefoperazone/sulbactam, ceftazidime, cefoperazone and doxycycline. Transferable drug resistance plasmid carrying rates of these clinical isolates were also studied. On the basis of the in vitro activities, 52.63%(30/57) of the isolated strains of P. aeruginosa were susceptible to antimicrobial agents selected (except doxycycline), 41.67%(15/36) of the isolated strains of Acinetobacter were susceptible to 11 antimicrobial agents. The sensitivity rate of P.aeruginosa and Acinetobacter to antimicrobial agents selected was 70% or greater to all except doxycycline. Furthermore, the sensitivity rate of P.aeruginosa to amikacin ciprofloxacin, ceftazidime, cefoperazone, cefoperazone/sulbactam, and that of Acinetobacter to cefoperazone/sulbactam, amikacin was more than 90%,among them amikacin, cefoperazone/sulbactam being the most effective. Plasmid analysis showed that 15.79%(9/57) P.aeruginosa strains and 13.89%(5/36) Acinetobacter strains carried plasmid. Conjugative plasmid carrying rates of P. aeruginosa strains and Acinetobacter strains were 7.02%(4/57), 13.89%(5/36), respectively. Conjugative plasmid didn′t play an important role in the formation and dissemination of drug resistance of P. aeruginosa and Acinetobacter.
文摘A laboratory information system (LIS) established in a microbiology department has the potential to play an important role in the quality of microbiology data such as culture of blood, urine, stool, pus swab samples etc. Such data could be effectively utilised to measure the burden of antimicrobial resistance among patients presented to various hospitals and clinics with an episode of an infectious illness of bacterial origin. A variety of clinical and epidemiological investigations are conducted using culture data and the presence of an electronic system such as LIS enhances such investigations and improves the reliability of measures of antimicrobial resistance owing to improved data quality as well as completeness of data gathered as opposed to paper based system. Therefore to improve surveillance of antimicrobial resistance in South Africa, there is a need to reinforce the functionality of the LIS in both public and private microbiology laboratories as this will help to improve internal quality control methodologies.
文摘Multi drug resistance microorganism is considered to be one of the major health problems. The aim of this study was to determine antibiotic susceptibility pattern of bacterial pathogens of surgical site infection. A total 250 samples were included, out of which 62.4% showed significant bacterial growth. Gram negative bacteria were 85.25% and gram positive bacteria were 14.75%;among them 65.38% of the total isolates were multi drug resistance (MDR). The age group between 31 - 40 found the highest number of isolates 22.4%. Among gram negative bacilli, the highest production of MDR was found in Acinetobacter spp. followed by Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. In gram positive cocci, the highest production of MDR was found in Staphylococcus aureus. Acinetobacter spp. was found highly susceptible to amikacin and gentamycin 20.1% followed by ofloxacin and ciprofloxacin 18.6% and 16.2% respectively. Staphylococcus aureus showed 100% sensitive to clindamycin whereas penicillin showed 100% resistance followed by amoxycillin (93.75%). Amikacine and clindamycin were drugs of choice for gram negative and gram positive bacteria respectively. This study showed that alarming increase of infections was caused by multi drug resistance bacterial organisms. It increases length of stay and may produce lasting sequelae and requires extra resources for investigations, management and nursing care. Surveillance of surgical site infection is a useful tool to demonstrate the magnitude of the problem and find out appropriate preventive methods.
文摘Because of their high efficiency, antibiotics have long been the primary treatment for infections, but the rise of drug-resistant pathogens has become a therapeutic concern. Nanoparticles, as novel biomaterials, are currently gaining global attention to combat them. Drug-resistant diseases may need the use of nanoparticles as a viable therapeutic option. By altering target locations and enzymes, decreasing cell permeability, inactivating enzymes, and increasing efflux by overexpressing efflux pumps, they can bypass conventional resistance mechanisms. Therefore, understanding how metal and metal oxide nanoparticles affect microorganisms that are resistant to antimicrobial drugs is the main objective of this review. Accordingly, the uses of metal and metal oxide nanoparticles in the fight against drug-resistant diseases appear promising. However, their mechanism of action, dose, and possible long-term effects require special attention and future research. Furthermore, repeated use of silver nanoparticles may cause gram-negative microorganisms to acquire resistance, necessitating additional study.
基金supported by the National Natural Science Foundation of China(32141003 and 82330110)the CAMS Innovation Fund for Medical Sciences(CIFMS+2 种基金2021-I2M-1-039)the National Science and Technology Infrastructure of China(National Pathogen Resource Center-NPRC-32)the Fundamental Research Funds for the Central Universities(2021-PT350-001).
文摘Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.
文摘<b><span style="font-family:Verdana;">Introduction:</span></b><span style="font-family:""><span style="font-family:Verdana;"> In the last two decades, the treatment of enteric infections has been complicated by the emergence of antimicrobial resistant strains. Occurrence of multidrug resistant Extended Spectrum Beta Lactamase (ESBL) producing </span><i><span style="font-family:Verdana;">Enterobactaeraceae</span></i><span style="font-family:Verdana;"> pose</span></span><span style="font-family:Verdana;">s</span><span style="font-family:""><span style="font-family:Verdana;"> the greatest risk to public health by raising morbidity and mortality by six folds in developing countries. The present study aims to determine the antibiotics resistance patterns of selected</span><i><span style="font-family:Verdana;"> Entero</span><span style="font-family:Verdana;">bacteriaceae</span></i><span style="font-family:Verdana;"> isolated from commercial poultry production systems i</span><span style="font-family:Verdana;">n Kiamb</span><span><span style="font-family:Verdana;">u County. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A laboratory based cross-sectional study was co</span></span><span style="font-family:Verdana;">nducted in six purposively selected Sub-Counties of Kiambu County from October 2020, to February 2021. A total of 437 fecal samples were collected from each household. The antibiotic susceptibility testing using disk diffusion method w</span></span><span style="font-family:Verdana;">as</span><span style="font-family:""><span style="font-family:Verdana;"> used against </span><i><span style="font-family:Verdana;">E.</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">coli</span></i><span style="font-family:""><span style="font-family:Verdana;">;</span><i><span style="font-family:Verdana;"> Salmonella spps.</span></i><span style="font-family:Verdana;">;</span><i><span style="font-family:Verdana;"> Shigella spps.</span></i><span style="font-family:Verdana;">;</span><i> </i><span style="font-family:Verdana;">and</span><i><span style="font-family:Verdana;"> Klebsiella spps. </span></i><span style="font-family:Verdana;">which were isolated and identified th</span></span><span style="font-family:Verdana;">r</span><span style="font-family:""><span style="font-family:Verdana;">ough standard biochemical. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Out of 437 fecal and stool samples collected, 591 isolates were recovered with </span><i><span style="font-family:Verdana;">E.</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">coli</span></i><span style="font-family:""><span style="font-family:Verdana;"> (48.9%) being the most frequently identified, followed by </span><i><span style="font-family:Verdana;">Shigella spps.</span></i><span style="font-family:Verdana;"> (18.8%), </span><i><span style="font-family:Verdana;">Salmonella spps.</span></i><span style="font-family:Verdana;"> (18.3%), and </span><i><span style="font-family:Verdana;">Klebsiella spps.</span></i><span style="font-family:Verdana;"> (14.0%). The study shows there was high prevalence of multiple resistance among isolates especially to Sulfamethoxazole (79%), Trimethoprim (71%), and Tetracyclines (59%), correspondingly. Additionally, the isolates showed </span></span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">highest rate of suscep</span><span style="font-family:Verdana;">tibility against Cefuroxime (94%), Gentamicin (93%), Ceftriaxo</span><span style="font-family:Verdana;">ne (91%), Cefepime (89%), Cefotaxime (85%), Ceftazidime (84%), and Chloramphenicol (77%), respectively. </span><b><span style="font-family:Verdana;">Discussion:</span></b><span style="font-family:Verdana;"> Our study indicates that both fecal and stool materials from commercial poultry and humans can be reservoir of multi-drug resistance enteric’s which can be a potential route</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">of transmission of resistance genes, which pose a great risk to public health of Kiambu Residence.
基金supported by grants received from CAAST-ACLH(NAHEP/CAAST/2018-19)of ICAR-World Bank-funded National Agricultural Higher Education Project(NAHEP).
文摘Background:The uroculturome indicates the profile of culturable microbes inhabiting the urinary tract,and it is often required to do a urine culture to find an effective antimicrobial to treat urinary tract infections(UTIs).Methods:This study targeted to understand the profile of culturable pathogens in the urine of apparently healthy(128)and humans with clinical UTIs(161)and their antimicrobial susceptibility.All the urine samples were analyzed to quantify microbial load and determine the diversity and antimicrobial susceptibility of microbes following standard microbiological methods.Results:In urine samples from UTI cases,microbial counts were 1.2×10^(4)±6.02×10^(3) colony-forming units(cfu)/mL,while in urine samples from apparently healthy humans,the average count was 3.33±1.34×10^(3) cfu/mL.In eight samples(six from UTI cases and two from apparently healthy people,Candida(C.albicans 3,C.catenulata 1,C.krusei 1,C.tropicalis 1,C.parapsiplosis 1,C.gulliermondii 1)and Rhizopus species(1)were detected.Candida krusei was detected only in a single urine sample from a healthy person and C.albicans was detected both in urine of healthy and clinical UTI cases.Gram-positive(G+ve)bacteria were more commonly(Odds ratio,1.98;CI99,1.01-3.87)detected in urine samples of apparently healthy humans,and Gram-negative(G−ve)bacteria(Odds ratio,2.74;CI99,1.44-5.23)in urines of UTI cases.From urine samples of 161 UTI cases,a total of 90 different types of microbes were detected and,73 samples had only a single type of bacteria.In contrast,49,29,3,4,1,and 2 samples had 2,3,4,5,6 and 7 types of bacteria,respectively.The most common bacteria detected in urine of UTI cases was Escherichia coli(52 samples),in 20 cases as the single type of bacteria,other 34 types of bacteria were detected in pure form in 53 cases.From 128 urine samples of apparently healthy people,88 types of microbes were detected either singly or in association with others,from 64 urine samples only a single type of bacteria was detected while 34,13,3,11,2 and 1 sample yielded 2,3,4,5,6 and seven types of microbes,respectively.In the urine of apparently healthy humans too,E.coli was the most common bacteria,(10 samples)followed by Staphylococcus haemolyticus(9),S.intermedius(5),and S.aureus(5),and similar types of bacteria also dominated in cases of mixed occurrence,E.coli was detected in 26,S.aureus in 22 and S.haemolyticus in 19 urine samples,respectively.G+ve bacteria isolated from urine samples’irrespective of health status were more often(P<0.01)resistant than G−ve bacteria to ajowan oil,holy basil oil,cinnamaldehyde,and cinnamon oil,but more susceptible to sandalwood oil(P<0.01).However,for antibiotics,G+ve were more often susceptible than G−ve bacteria to cephalosporins,doxycycline,and nitrofurantoin.Conclusion:The study concludes that to understand the role of good and bad bacteria in the urinary tract microbiome more targeted studies are needed to discern the isolates at the pathotype level.Further,the study suggests the use of antibiotics by observing good antibiotic stewardship following antibiotic susceptibility testing only.
文摘Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacterial pathogen was carried out on a total of 722 patients that were admitted to the ICU of Fatmawati Hospital Jakarta Indonesia during January 2009 to March 2010. All bacteria were identified by standard microbiologic methods,and(heir antibiotic susceptibility testing was performed using disk diffusion method.Results:Specimens were collected from 385 patients who were given antimicrobial treatment,of which 249(64.68%) were cultured positive and 136(35.32%) were negative.The most predominant isolate was Pseudomonas aeruginosa(P.aeruginosa)(26.5%) followed by Klebsiella pneumoniae(K.pneumoniae)(15.3%) and Staphylococcus epidermidis(14.9%).P.aeruginosa isolates showed high rate of resistance to cephalexin(95.3%),cefotaxime(64.1%),and ceftriaxone(60.9%).Amikacin was the most effective(84.4%) antibiotic against P.aeruginosa followed by imipenem(81.2%),and meropenem(75.0%).K.pneumoniae showed resistance to cephalexin(86.5%),ceftriaxone(75.7%),ceftazidime(73.0%),cefpirome(73.0%) and cefotaxime(67.9%),respectively.Conclusions:Most bacteria isolated from ICU of Fatmawati Hospital Jakarta Indonesia were resistant to the third generation of cephalosporins,and quinolone antibiotics.Regular surveillance of antibiotic susceptibility pallerns is very important for setting orders to guide the clinician in choosing empirical or directed therapy of infected patients.
文摘In this study, an antimicrobial component(RTCI) was purified from the skin of Rana temporaria chensinensis, David. Antimicrobial activities of RTCI against clinical multi-drug resistant bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureaus, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus fae-calis, and Proteus mirabilis, were measured in vitro by means of minimal inhibitory concentration and time-kill studies. The results indicate that RTCI could inhibit the growth of these bacteria at a proper concentration and suggest that RT-CI shows a better antimicrobial activity to Gram-negative bacterial strains than to Gram-positive bacterial strains.
文摘Streptococcus pneumonia infection is important cause of morbidity and mortality. This study was conducted to find out the prevalence and antimicrobial susceptibility pattern of Streptococcus pneumoniae isolates at general hospitalin the central region of Japan from December 2013 to February 2014. Streptococcus pneumoniae was identified by standard laboratory procedure. Antimicrobial susceptibility testing was performed by micro dilution assay according to CLSI recommendation. One hundred fifty-three Streptococcus pneumoniae were isolated among which 80 (52.2%) were males and 73 (47.8%) were females. Nasal discharge (134%/87.6%) contributed more than other biological materials. The age incidence of (0 - 1) years, (1 - 10) years, (11 - 40) years, (41 - 60) years and >60 years age groups were 26 (17.0%), 110 (71.9%), 3 (2.0%), 10 (6.5%), and 4 (2.6%) respectively. Positive samples were received mostly from the pediatrics (137%/89.5%), respiratory medicine (12%/7.8%) and lowest from gastroenterology (1%/0.6%) and neurology (1/ 0.6%) department. Vancomycin and rifampicin were the most active antibiotics with 100% susceptibility rates. The next best were levofloxacin, penicillin G and ceftriaxone. Our study revealed that 82 Streptococcus pneumonia isolates had multidrug resistant ability (53.6%). Streptococcus pneumoniae infection spreads among community easily and inappropriate use of antibiotics contributes to their resistance. Continuous antimicrobial susceptible surveys are essential to guide policy on the adequate use of antibiotics to reduce the morbidity and mortality and reduce the emergency of antimicrobial resistance.