Pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)is an essential layer of plant disease resistance.Robust bioassays for PTI are pre-required to dissect its molecular mechanism.In this study,we establ...Pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)is an essential layer of plant disease resistance.Robust bioassays for PTI are pre-required to dissect its molecular mechanism.In this study,we established that lateral root growth inhibition as a simple and robust measurement of PTI in rice seedlings.Specifically,flg22,a well-characterized PAMP from bacterial flagellin,was used to induce PTI in rice seedlings.While flg22 treatment induced PR gene expression and mitogen-activated protein kinase activation in the roots of rice seedlings to support the PTI triggered,this treatment substantially repressed lateral root growth,but it did not alter primary root growth.Moreover,treatments with chitin(i.e.,a fungal PAMP)and oligogalacturonides(i.e.,classical damage-associated molecular pattern)clearly inhibited the lateral root growth,although a priming step involving ulvan was required for the chitin treatment.The bioassay developed was applicable to various rice cultivars and wild species.Thus,lateral root growth inhibition represents a simple and reliable assay for studying PTI in rice plants.展开更多
A turbot(Scophthalmus maximus)cell line named SMSP was obtained from the spleen.The origin of the cells was identified by morphology,chromosome number and COI gene.The optimal basic medium,serum concentration and grow...A turbot(Scophthalmus maximus)cell line named SMSP was obtained from the spleen.The origin of the cells was identified by morphology,chromosome number and COI gene.The optimal basic medium,serum concentration and growth temperature of the cells were detected.SMSP cell line is mainly composed of fibroblast-like cells.Most of the SMSP cells contained 44 chromosomes,and the sequence of COI gene confirmed that the cells were originated from turbot.The optimal culture conditions were 24℃,DMEM+10%FBS.The cell line had high transfection efficiency for siRNA and plasmid.After stimulation with lipopolysaccharide(LPS)or poly(I:C),the expressions of immune-related genes such as TNF-β,IL-12s,IL-10 and IL-1βwere up-regulated significantly in the early stage(P<0.05).This study will provide a model for exploring immune mechanism of turbot against pathogen in vitro.展开更多
Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in imm...Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in immune responses against a variety of pathogens,including fungi,bacteria,and viruses.However,research on the specific response mechanisms and the spectrum of different kinase activities against various pathogens remains insufficient.This review provides an in-depth and comprehensive overview of the types and functions of RLKs and RLCKs involved in disease resistance,emphasizing the central role of certain RLKs and RLCKs in the plant immune system.These kinases can recognize specific molecular patterns of pathogens and rapidly initiate an immune response in rice.Furthermore,the activity and functional regulation of these key kinases are tightly controlled by various post-translational modifications,such as phosphorylation and ubiquitination.This meticulous regulation ensures that the rice immune system's response is both precise and timely,effectively balancing the intensity of the immune response and preventing potential issues caused by either hyperactivity or insufficiency.By synthesizing current research findings,this review not only broadens our understanding of the role of RLKs and RLCKs in plant immunity but also provides new perspectives and strategies for future research on disease resistance breeding in rice.Future studies are expected to delve deeper into the signaling networks and regulatory mechanisms of these kinases,exploring their potential in agricultural production to develop rice varieties with enhanced disease resistance.展开更多
Helicobacter pylori(H.pylori)infects the human stomach during infancy and develops into chronic activeinflammation.The majority of H.pylori tend to colonize within the mucous gel layer of the stomach.Thestomach lacks ...Helicobacter pylori(H.pylori)infects the human stomach during infancy and develops into chronic activeinflammation.The majority of H.pylori tend to colonize within the mucous gel layer of the stomach.Thestomach lacks its own immune function,thus innateimmunity as the first line of defense is vital for specificimmunity against H.pylori.We review recent discoveries in the pathophysiologic roles of toll-like receptors(TLRs),mainly TLR2 and TLR4,in H.pylori-induced inflammation.In addition,the TLR pathways activated byH.pylori-induced inflammation have been shown to beclosely associated not only with gastric carcinogenesis,but also with formation of the tumor microenvironmentthrough the production of pro-inflammatory cytokines,chemokines,and reactive oxygen species.Althoughthe correlation between single nucleotide polymorphisms of TLRs and gastric cancer risk remains unclear,a recent study demonstrated that STAT3-driven upregulation of TLR2 might promote gastric tumorigenesis independent of inflammation.Further research onthe regulation of TLRs in H.pylori-associated gastriccarcinogenesis will uncover diagnostic/predictive biomarkers and therapeutic targets for gastric cancer.展开更多
As an aquatic fish,the spotted halibut Verasper variegatus is highly susceptible to bacterial and virus infections.Tumor necrosis factor-alpha(TNF-α)as a cytokine could control the inflammatory responses.The function...As an aquatic fish,the spotted halibut Verasper variegatus is highly susceptible to bacterial and virus infections.Tumor necrosis factor-alpha(TNF-α)as a cytokine could control the inflammatory responses.The functions of TNF-αin many species have been widely studied,particularly in mammals.However,little is known about the TNF-αfunctions in V.variegatus.We first cloned and sequenced the TNF-αgene in V.variegatus(VvTNF-α).The two conserved cysteine residues,transmembrane sequence,Thr-Leu motif,and TNF family signature,as well as the TA-rich motifs of its proteins related to inflammatory responses had high similarity to those of the other teleost and mammalian TNF-α.The phylogenetic analysis showed that VvTNF-αwas consistent with TNF-αgenes of other vertebrates.The VvTNF-αtranscripts were extensively distributed in the peripheral blood leukocytes(PBLs),spleen,and gill,indicating that the VvTNF-αhad a role in immune function.Furthermore,treatment with pathogen-associated molecular patterns(PAMPs)could induce a rapid and significant increase of VvTNF-αin the PBLs,which reveals that VvTNF-αdoes participate in the host immune responses against bacterial and viral pathogens.We found that VvTNF-αhad an interesting expression pattern during metamorphosis,showing that the flatfish TNF-αmay have some novel functions during specific developmental stages.In addition,the 3 D structure prediction of VvTNF-αprovided an indication of how it is likely to interact with other proteins.Therefore,VvTNF-αhas multiple functions,and provides valuable information to explore novel functions of TNF-α.展开更多
Sepsis, which refers to a systemic inflammatory response syndrome resulting from a microbial infection, represents the leading cause of death in intensive care units. The pathogenesis of sepsis remains poorly understo...Sepsis, which refers to a systemic inflammatory response syndrome resulting from a microbial infection, represents the leading cause of death in intensive care units. The pathogenesis of sepsis remains poorly understood although it is attributable to dysregulated immune responses orchestrated by innate immune cells that sequentially release early(e.g., tumor necrosis factor(TNF), interleukin-1(IL-1), and interferon-γ(IFN-γ) and late(e.g., high mobility group box 1(HMGB1)) pro-inflammatory mediators. As a ubiquitous nuclear protein, HMGB1 can be passively released from pathologically damaged cells, thereby converging infection and injury on commonly dysregulated inflammatory responses. We review evidence that supports extracellular HMGB1 as a late mediator of inflammatory diseases and discuss the potential of several Chinese herbal components as HMGB1-targeting therapies. We propose that it is important to develop strategies for specifically attenuating injury-elicited inflammatory responses without compromising the infection-mediated innate immunity for the clinical management of sepsis and other inflammatory diseases.展开更多
Hepatitis D virus(HDV)is a global health threat with more than 15 million humans affected.Current treatment options are largely unsatisfactory leaving chronically infected humans at high risk to develop liver cirrhosi...Hepatitis D virus(HDV)is a global health threat with more than 15 million humans affected.Current treatment options are largely unsatisfactory leaving chronically infected humans at high risk to develop liver cirrhosis and hepatocellular carcinoma.HDV is the only human satellite virus known.It encodes only two proteins,and requires Hepatitis B virus(HBV)envelope protein expression for productive virion release and spread of the infection.How HDV could evolve and why HBV was selected as a helper virus remains unknown.Since the discovery of Na+-taurocholate co-transporting polypeptide as the essential uptake receptor for HBV and HDV,we are beginning to understand the interactions of HDV and the immune system.While HBV is mostly regarded a stealth virus,that escapes innate immune recognition,HBV-HDV coinfection is characterized by a strong innate immune response.Cytoplasmic RNA sensor melanoma differentiation antigen 5 has been reported to recognize HDV RNA replication and activate innate immunity.Innate immunity,however,seems not to impair HDV replication while it inhibits HBV.In this review,we describe what is known up-to-date about the interplay between HBV as a helper and HDV’s immune evasion strategy and identify where additional research is required.展开更多
In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliag...In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliagnin B(a),camelliagnin A(b),16-O-angeloybarringtogenol C(c),theasapogenol E(d),theasapogenol F(e).Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites(a1−a6).The anti-inflammatory potential of these compounds was assessed using pathogenassociated molecular patterns(PAMPs)and damage-associated molecular patterns molecules(DAMPs)-mediated cellular inflammation models.Notably,compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide(LPS)and high-mobility group box 1(HMGB1)-induced inflammation,surpassing the efficacy of the standard anti-inflammatory agent,carbenoxolone.Conversely,compounds d,a3,and a6 selectivity targeted endogenous HMGB1-induced inflammation,showcasing a pronounced specificity.These results underscore the therapeutic promise of C.oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0100602)the National Natural Science Foundation of China(Grant No.31901868)。
文摘Pathogen-associated molecular pattern(PAMP)-triggered immunity(PTI)is an essential layer of plant disease resistance.Robust bioassays for PTI are pre-required to dissect its molecular mechanism.In this study,we established that lateral root growth inhibition as a simple and robust measurement of PTI in rice seedlings.Specifically,flg22,a well-characterized PAMP from bacterial flagellin,was used to induce PTI in rice seedlings.While flg22 treatment induced PR gene expression and mitogen-activated protein kinase activation in the roots of rice seedlings to support the PTI triggered,this treatment substantially repressed lateral root growth,but it did not alter primary root growth.Moreover,treatments with chitin(i.e.,a fungal PAMP)and oligogalacturonides(i.e.,classical damage-associated molecular pattern)clearly inhibited the lateral root growth,although a priming step involving ulvan was required for the chitin treatment.The bioassay developed was applicable to various rice cultivars and wild species.Thus,lateral root growth inhibition represents a simple and reliable assay for studying PTI in rice plants.
基金the National Natural Science Foundation of China(No.31902403)the Young Experts of Taishan Scholars(No.tsqn201909130)+2 种基金the advanced Talents Foundation of QAU grant(No.663-1120029)the Shandong Technical System of Fish Industry(No.SDAIT-12-03)the Breeding Plan of Shandong Provincial Qingchuang Research Team(2019),China。
文摘A turbot(Scophthalmus maximus)cell line named SMSP was obtained from the spleen.The origin of the cells was identified by morphology,chromosome number and COI gene.The optimal basic medium,serum concentration and growth temperature of the cells were detected.SMSP cell line is mainly composed of fibroblast-like cells.Most of the SMSP cells contained 44 chromosomes,and the sequence of COI gene confirmed that the cells were originated from turbot.The optimal culture conditions were 24℃,DMEM+10%FBS.The cell line had high transfection efficiency for siRNA and plasmid.After stimulation with lipopolysaccharide(LPS)or poly(I:C),the expressions of immune-related genes such as TNF-β,IL-12s,IL-10 and IL-1βwere up-regulated significantly in the early stage(P<0.05).This study will provide a model for exploring immune mechanism of turbot against pathogen in vitro.
基金supported by the National Natural Science Foundation of China (Grant No.U2005211)the Fuzhou General Teaching Hospital (the 900th Hospital)Key Project,China (Grant No.2022ZD01)the Fujian Clinical Research Center for Aptamer-based Precision Testing,China (Grant No.2021Y2017)。
文摘Receptor-like kinases(RLKs)and receptor-like cytoplasmic kinases(RLCKs)play an indispensable role in the perception and transmission of extracellular signals in plants.In rice,these kinases actively participate in immune responses against a variety of pathogens,including fungi,bacteria,and viruses.However,research on the specific response mechanisms and the spectrum of different kinase activities against various pathogens remains insufficient.This review provides an in-depth and comprehensive overview of the types and functions of RLKs and RLCKs involved in disease resistance,emphasizing the central role of certain RLKs and RLCKs in the plant immune system.These kinases can recognize specific molecular patterns of pathogens and rapidly initiate an immune response in rice.Furthermore,the activity and functional regulation of these key kinases are tightly controlled by various post-translational modifications,such as phosphorylation and ubiquitination.This meticulous regulation ensures that the rice immune system's response is both precise and timely,effectively balancing the intensity of the immune response and preventing potential issues caused by either hyperactivity or insufficiency.By synthesizing current research findings,this review not only broadens our understanding of the role of RLKs and RLCKs in plant immunity but also provides new perspectives and strategies for future research on disease resistance breeding in rice.Future studies are expected to delve deeper into the signaling networks and regulatory mechanisms of these kinases,exploring their potential in agricultural production to develop rice varieties with enhanced disease resistance.
文摘Helicobacter pylori(H.pylori)infects the human stomach during infancy and develops into chronic activeinflammation.The majority of H.pylori tend to colonize within the mucous gel layer of the stomach.Thestomach lacks its own immune function,thus innateimmunity as the first line of defense is vital for specificimmunity against H.pylori.We review recent discoveries in the pathophysiologic roles of toll-like receptors(TLRs),mainly TLR2 and TLR4,in H.pylori-induced inflammation.In addition,the TLR pathways activated byH.pylori-induced inflammation have been shown to beclosely associated not only with gastric carcinogenesis,but also with formation of the tumor microenvironmentthrough the production of pro-inflammatory cytokines,chemokines,and reactive oxygen species.Althoughthe correlation between single nucleotide polymorphisms of TLRs and gastric cancer risk remains unclear,a recent study demonstrated that STAT3-driven upregulation of TLR2 might promote gastric tumorigenesis independent of inflammation.Further research onthe regulation of TLRs in H.pylori-associated gastriccarcinogenesis will uncover diagnostic/predictive biomarkers and therapeutic targets for gastric cancer.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.31101891)the Hitech Research and Development Program of China(No.2012AA10A408)
文摘As an aquatic fish,the spotted halibut Verasper variegatus is highly susceptible to bacterial and virus infections.Tumor necrosis factor-alpha(TNF-α)as a cytokine could control the inflammatory responses.The functions of TNF-αin many species have been widely studied,particularly in mammals.However,little is known about the TNF-αfunctions in V.variegatus.We first cloned and sequenced the TNF-αgene in V.variegatus(VvTNF-α).The two conserved cysteine residues,transmembrane sequence,Thr-Leu motif,and TNF family signature,as well as the TA-rich motifs of its proteins related to inflammatory responses had high similarity to those of the other teleost and mammalian TNF-α.The phylogenetic analysis showed that VvTNF-αwas consistent with TNF-αgenes of other vertebrates.The VvTNF-αtranscripts were extensively distributed in the peripheral blood leukocytes(PBLs),spleen,and gill,indicating that the VvTNF-αhad a role in immune function.Furthermore,treatment with pathogen-associated molecular patterns(PAMPs)could induce a rapid and significant increase of VvTNF-αin the PBLs,which reveals that VvTNF-αdoes participate in the host immune responses against bacterial and viral pathogens.We found that VvTNF-αhad an interesting expression pattern during metamorphosis,showing that the flatfish TNF-αmay have some novel functions during specific developmental stages.In addition,the 3 D structure prediction of VvTNF-αprovided an indication of how it is likely to interact with other proteins.Therefore,VvTNF-αhas multiple functions,and provides valuable information to explore novel functions of TNF-α.
基金supported by grants from the National Center of Complementary and Alternative Medicine (NCCAM, R01AT005076)the National Institute of General Medical Sciences (NIGMS, R01GM063075)
文摘Sepsis, which refers to a systemic inflammatory response syndrome resulting from a microbial infection, represents the leading cause of death in intensive care units. The pathogenesis of sepsis remains poorly understood although it is attributable to dysregulated immune responses orchestrated by innate immune cells that sequentially release early(e.g., tumor necrosis factor(TNF), interleukin-1(IL-1), and interferon-γ(IFN-γ) and late(e.g., high mobility group box 1(HMGB1)) pro-inflammatory mediators. As a ubiquitous nuclear protein, HMGB1 can be passively released from pathologically damaged cells, thereby converging infection and injury on commonly dysregulated inflammatory responses. We review evidence that supports extracellular HMGB1 as a late mediator of inflammatory diseases and discuss the potential of several Chinese herbal components as HMGB1-targeting therapies. We propose that it is important to develop strategies for specifically attenuating injury-elicited inflammatory responses without compromising the infection-mediated innate immunity for the clinical management of sepsis and other inflammatory diseases.
基金Supported by German Research Foundation,No. TRR 179
文摘Hepatitis D virus(HDV)is a global health threat with more than 15 million humans affected.Current treatment options are largely unsatisfactory leaving chronically infected humans at high risk to develop liver cirrhosis and hepatocellular carcinoma.HDV is the only human satellite virus known.It encodes only two proteins,and requires Hepatitis B virus(HBV)envelope protein expression for productive virion release and spread of the infection.How HDV could evolve and why HBV was selected as a helper virus remains unknown.Since the discovery of Na+-taurocholate co-transporting polypeptide as the essential uptake receptor for HBV and HDV,we are beginning to understand the interactions of HDV and the immune system.While HBV is mostly regarded a stealth virus,that escapes innate immune recognition,HBV-HDV coinfection is characterized by a strong innate immune response.Cytoplasmic RNA sensor melanoma differentiation antigen 5 has been reported to recognize HDV RNA replication and activate innate immunity.Innate immunity,however,seems not to impair HDV replication while it inhibits HBV.In this review,we describe what is known up-to-date about the interplay between HBV as a helper and HDV’s immune evasion strategy and identify where additional research is required.
基金supported by the National Nature Science Foundation of China(No.21302052)the“Program for New Century Excellent Talents in University”awarded to ZHANG Jian(No.NECT-11-0739)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJKY19_0658)Jiangsu Funding Program for Excellent Postdoctoral Talent,and“Jiangsu Funding Program for Excellent Postdoctoral Talent”awarded to SHEN Pingping.
文摘In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliagnin B(a),camelliagnin A(b),16-O-angeloybarringtogenol C(c),theasapogenol E(d),theasapogenol F(e).Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites(a1−a6).The anti-inflammatory potential of these compounds was assessed using pathogenassociated molecular patterns(PAMPs)and damage-associated molecular patterns molecules(DAMPs)-mediated cellular inflammation models.Notably,compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide(LPS)and high-mobility group box 1(HMGB1)-induced inflammation,surpassing the efficacy of the standard anti-inflammatory agent,carbenoxolone.Conversely,compounds d,a3,and a6 selectivity targeted endogenous HMGB1-induced inflammation,showcasing a pronounced specificity.These results underscore the therapeutic promise of C.oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.