期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Impact of long-term chemical fertilizer and organic amendment to Fusarium root rot of soybean 被引量:2
1
作者 Kaili Wang Xinyu Hu +6 位作者 Sai Yang Kaiyan Xing Xin Zhang Lin Zhu Xiaozeng Han Yanli Xu Wei Wei 《Oil Crop Science》 2020年第1期48-53,共6页
Soil suppressiveness to Fusarium root rot of soybean had been observed in a black soil field after a long-term fertilization with nitrogen(N)and phosphorus(P)fertilizer combined with pig manure as organic amendment(NP... Soil suppressiveness to Fusarium root rot of soybean had been observed in a black soil field after a long-term fertilization with nitrogen(N)and phosphorus(P)fertilizer combined with pig manure as organic amendment(NPM),rather than that with only nitrogen and phosphorus fertilizer(NP)or no fertilizer(NF).To determine the microbial role on this suppressiveness,fungal and bacterial community characteristics in NPM,NP and NF treatments were investigated by q PCR and DGGE.Compared with the similar bacterial community characteristics among 3 treatments,fungal community,especially Fusarium population size and community composition in NPM treatment were different with those of NP and NF groups.Based on the isolation and pathogenicity test,pathogenic F.oxysporum,F.graminearum,F.verticillioide and F.lateritium absolutely dominated Fusarium community in NF and NP groups.Nonpathogenic F.avenaceum,F.equiseti,F.culmorum,F.redolens,F.solani and F.tricinctum dominated Fusarium community in NPM group.Isolation rate of pathogenic Fusarium in NPM reduced from 100%to 38%in NF.These results suggested that the dominance of soil non-pathogenic Fusarium population induced by organic amendment might play an important role on suppressing Fusarium root rot in the tested field. 展开更多
关键词 Organic amendment Soybean root rot pathogenic fusarium Non-pathogenic fusarium
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部