The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian in...The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.展开更多
Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially availa...Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially available vaccine.Live vaccines containing Bb that are widely used abroad are generally efective but can establish latency and potentially reactivate to cause illness in some immunodefcient vaccinated recipients,raising safety concerns.In this study,34 canine-derived and two feline-derived Bb strains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023.The PCR results showed that the percentage of positive Bb was 22.94%(441/1922),and more than 90%of the Bb isolates had four virulence factor-encoding genes(VFGs),namely,fhaB,prn,betA and dnt.All the isolated strains displayed a multidrug-resistant phenotype.The virulence of 10 Bb strains isolated from dogs with respiratory symptoms was tested in mice,and we found that eight isolates were highly virulent.Furthermore,the eight Bb isolates with high virulence were inactivated and intramuscularly injected into mice,and three Bb strains(WH1218,WH1203 and WH1224)with the best protective efcacy were selected.Dogs immunized with these three strains exhibited strong protection against challenge with the Bb feld strain WH1218.Ultimately,the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate.Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bb feld strain WH1218.This study revealed that Bb is an important pathogen that causes respiratory diseases in domestic dogs and cats in China,and all the isolates exhibited multidrug resistance.The present work contributes to the current understanding of the prevalence,antimicrobial resistance,and virulence genes of Bb in domestic dogs and cats.Additionally,our results suggest that the WH1218 strain is a promising candidate safe and efcacious inactivated Bb vaccine.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological technique...The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.展开更多
Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin producti...Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin production regulation,locus A,herein renamed AbsR,a blood survival regulator),a member of the MarR(multiple antibiotic resistance regulator)transcriptional regulator family,governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.However,a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.In this study,we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq(chromatin immunoprecipitation sequencing)and RNA-Seq(RNA sequencing)methods.We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.Furthermore,we showed that:1)AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster;2)AbsR positively impacts biofilm formation via direct regulation of the T2SS(type II secretion system)but plays a marginal role in virulence;and 3)AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.Finally,our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.Altogether,this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism,and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.Interestingly,we found that AbsR severely represses the expression of the type I-F CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated)systems,which could have implications in CRISPR biology and application.展开更多
The necrotrophic fungus, Sclerotinia sclerotiorum, employs an array of cell wall-degrading enzymes(CWDEs), including cellulase, to dismantle host cell walls. However, the molecular mechanisms through which S. scleroti...The necrotrophic fungus, Sclerotinia sclerotiorum, employs an array of cell wall-degrading enzymes(CWDEs), including cellulase, to dismantle host cell walls. However, the molecular mechanisms through which S. sclerotiorum degrades cellulose remain elusive. Here, we unveil a novel secretory cellobiohydrolase, SsdchA, characterized by a signal peptide and a Glyco_hydro_7(GH7) domain. SsdchA exhibits a robust expression of during early infection stages. Interestingly, colony morphology and growth rates remain unaffected across the wild-type, SsdchA deletion strains and SsdchA overexpression strains on potato dextrose agar(PDA) medium. Nevertheless, the pathogenicity and cellobiohydrolase activity decreased in the SsdchA deletion strains, but enhanced in the SsdchA overexpression strains. Moreover,the heterologous expression of SsdchA in Arabidopsis thaliana leads to reduced cellulose content and heightened susceptibility to S. sclerotiorum. Collectively, our data underscore the pivotal role of the novel cellobiohydrolase SsdchA in the pathogenicity of S. sclerotiorum.展开更多
Litchi downy blight,caused by the plant pathogenic oomycete Peronophythora litchii,is one of the most devastating diseases on litchi and resulted in huge economic losses.Autophagy plays an essential role in the develo...Litchi downy blight,caused by the plant pathogenic oomycete Peronophythora litchii,is one of the most devastating diseases on litchi and resulted in huge economic losses.Autophagy plays an essential role in the development and pathogenicity of the filamentous fungi.However,the function of autophagy in oomycetes remain elusive.Here,an autophagy-related protein Atg3 homolog PlAtg3 was identified and characterized in P.litchii.The absence of PlATG3 through the CRISPR/Cas9 gene replacement strategy compromised vegetative growth and sexual/asexual development.Cytological analyses revealed that the deletion of PlATG3 impaired autophagosome formation with monodansylcadaverine(MDC)staining and significantly disrupted zoospore release due to defects of sporangial cleavage with FM4-64 staining.Atg8 is considered to be an autophagy marker protein in various species.Western blot analysis indicated that PlAtg3 is involved in degradation of PlAtg8-PE.Interestingly,PlAtg3 was unable to interact with PlAtg8 in yeast two hybrid(Y2H)assays,possibly due to the absence of the Atg8 family interacting motif(AIM)in PlAtg3.Furthermore,pathogenicity assays revealed that the deletion of PlATG3 considerably reduced the virulence of P.litchii.Taken together,our data reveal that PlAtg3 plays an important role in radial growth,asexual/sexual development,sporangial cleavage and zoospore release,autophagosome formation,and pathogenicity in P.litchii.This study contributes to a better understanding of the pathogenicity mechanisms of P.litchii and provides insights for the development of more effective strategies to control oomycete diseases.展开更多
The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic ...The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair.展开更多
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte...AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.展开更多
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F....Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.展开更多
Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At pre...Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At present,many commercial IBV vaccines have been used for the prevention and control of IB;however,IB outbreaks occur frequently.In this study,two new strains of IBV,SX/2106 and SX/2204,were isolated from two flocks which were immunized with IBV H120 vaccine in central China.Phylogenetic and recombination analysis indicated that SX/2106,which was clustered into the GI-19 lineage,may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage,which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death,and H120 immunization could not provide effective protection against the two IBV isolates.It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously,with a mortality rate up to 60%.Considering the continuous mutation and recombination of the IBV genome to produce new variant strains,it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics.展开更多
Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical...Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset.展开更多
AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.MET...AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.展开更多
Eighteen blast isolates were obtained from hybrid combination Wuyou308 using the Magnaporthe oryzae pathogen isolation method.Race identification of these isolates was conducted based on seven Chinese blast differenti...Eighteen blast isolates were obtained from hybrid combination Wuyou308 using the Magnaporthe oryzae pathogen isolation method.Race identification of these isolates was conducted based on seven Chinese blast differentials and 11 blast monogenic lines.The results indicated that the isolates were identified as the races of ZB13,ZB15 and ZC13,accounting for 66.67%,27.78%,5.56%,respectively,and the resistance genes including Pi-ta2 and Pi-sh,Pi-i were highly susceptible to these isolates,while the resistance genes like Pi-kh,Pi-1,Pi2,Pi-9 and Pi-50 showed good resistance to tested pathogens.All isolates were compatible to the original rice hybrid Wuyou308.Three isolates including GDHY-308-1401 were used for testing their pathogenicity to 45 local varieties.The results demonstrated that 13 varieties appeared highly susceptible to the tested isolates,accounting for 28.89%;two varieties appeared moderately susceptible to the tested isolates,accounting for 4.44%;30 varieties showed moderately/highly resistance,accounting for 66.67%.Among them,some of new hybrid combinations such as Wufengyou 9802,Wuyou 613,Wuyou 1179 showed good resistance to the inoculated strains,and they were recommended to be candidates in the rice region where Wuyou308 showed susceptibility.展开更多
[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus...[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus establish a systematic model of bacteria-fungus-plant.[Methods]Fifty-eight strains of bacteria and one strain of pathogenic fungi,Globisporangium ultimatum,were used for the experiments.These 58 bacterial strains were assembled into a bacterial community,and the bacteria with abundance in the top 1%were reassembled into a dominant bacterial community as measured by 16S rDNA.[Results]The growth of A.annua seedlings inoculated with bacterial communities and pathogenic fungi or dominant bacterial communities and pathogenic fungi was significantly better than that of A.annua seedlings inoculated with pathogenic fungi during in vitro confrontation,which was evident in both enzymatic and non-enzymatic antioxidant assays.[Conclusions]The results suggest that the dominant bacterial community has a crucial role as a representative core microbial community of synthetic bacterial community,which can protect plants by interfering with the growth of phytopathogenic fungi mediated by chemical signals,and can be used as the main synthetic community of biocides to achieve the effect of biocontrol.展开更多
BACKGROUND The prevalence of germline pathogenic variants in high hereditary risk breast and/or ovarian cancer patients and unaffected subjects referred for testing is an unmet need in low and middle-income countries....BACKGROUND The prevalence of germline pathogenic variants in high hereditary risk breast and/or ovarian cancer patients and unaffected subjects referred for testing is an unmet need in low and middle-income countries.AIM To determine the prevalence of germline pathogenic variants in high hereditary risk patients with breast and/or ovarian cancer and unaffected individuals.METHODS We retrospectively reviewed records of patients and unaffected subjects referred for germline pathogenic variant testing due to high hereditary risk between 2010-2020.Data was collected and analyzed on Excel sheet.RESULTS In total,358 individuals were included,including 257 patients and 101 unaffected individuals with relatives with breast or ovarian cancer.The prevalence of breast cancer susceptibility gene(BRCA)1/2 pathogenic variants was 8.63%(19/220)in patients with breast cancer,and 15.1%(5/33)in those with ovarian cancer.Among the 25 of 220 patients with breast cancer tested by next-generation sequencing,3 patients had pathogenic variants other than BRCA1/2.The highest risk was observed in those aged 40 years with breast cancer and a positive family history,where the BRCA1/2 prevalence was 20.1%(9/43).Among the unaffected subjects,31.1%(14/45)had the same BRCA1/2 pathogenic variants in their corresponding relatives.Among the subjects referred because of a positive family history of cancer without known hereditary factors,5.35%(3/56)had pathogenic variants of BRCA1 and BRCA2.The c.131G>T nucleotide change was noted in one patient and two unrelated unaffected subjects with a BRCA1 pathogenic variant.CONCLUSION This study showed a 8.63%prevalence of pathogenic variants in patients with breast cancer and a 15.1%prevalence in patients with ovarian cancer.Among the relatives of patients with BRCA1/2 pathogenic variants,31%tested positive for the same variant,while 5.3%of subjects who tested positive due to a family history of breast cancer had a BRCA pathogenic variant.展开更多
[Objective] The pathogenic Escherichia coli in musk deer was classified at molecular level to provide basic materials for molecular epidemiology of pathogenic Escherichia coli in musk deer. [Method] Plasmids from 24 p...[Objective] The pathogenic Escherichia coli in musk deer was classified at molecular level to provide basic materials for molecular epidemiology of pathogenic Escherichia coli in musk deer. [Method] Plasmids from 24 pathogenic Escherichia coli in musk deer were extracted by the Lysis Triton method, and then identified by single enzyme digestion with three endonucleases of Hind Ⅲ, EcoR Ⅰ and BamH Ⅰ. [Result] The yield rate of plasmids was 91.6%, and 24 pathogenic Escherichia coli in musk deer had the identical or similar plasmid profiles. [Conclusion] Plasmid DNA analysis offers scientific basis for molecular epidemiology of pathogenic Escherichia coli in musk deer in Sichuan Institute of Musk Deer Breeding.展开更多
[ Objective] The aim of this study was to provide a theoretical basis for the prevention and treatment of highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS). [Method] Antigen location and hist...[ Objective] The aim of this study was to provide a theoretical basis for the prevention and treatment of highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS). [Method] Antigen location and histopathological observation in natural cases infected by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) were analyzed by immunohistochemistry and H. E. staining. [Result] The virus antigen mainly existed in epithelial calls, and also a few in mecrophages, lymphocytes and brain nerve cells. [ Conclusion] The cell and tissue tropism of HP-PRRSV strain in natural cases is different from that of previous strains.展开更多
[Objective] This study aimed to investigate the genetic variation of g E gene of an epidemic pseudorabies virus(PRV) strain and its pathogenicity to piglets. [Method] By serial passage in Vero cells, a PRV strain wa...[Objective] This study aimed to investigate the genetic variation of g E gene of an epidemic pseudorabies virus(PRV) strain and its pathogenicity to piglets. [Method] By serial passage in Vero cells, a PRV strain was isolated from the brain tissues of stillborn fetuses delivered by sows with suspected PRV infection and preliminarily identified by PCR. g E gene of the isolated PRV strain was amplified and sequenced for phylogenetic analysis. In addition, the pathogenicity of the isolated PRV strain to 6-week-old piglets was evaluated. [Result] A PRV strain was successfully isolated and named PRV N5 B strain, which could proliferate in Vero cells and TCID50 of the 15 thgeneration virus liquid reached 10^7.125/0.1 ml. Specific bands could be amplified by PCR. g E gene in the isolated PRV strain was 1 740 bp in length. A phylogenetic tree was constructed based on full-length g E sequences, which showed that PRV N5 B strain and PRV strains isolated since 2012 were clustered into the same independent category and shared 99.7%-100% homology of nucleotide sequences. Compared with related sequences published previously, there were insertions of three consecutive bases at two loci. Animal experiments showed that intranasal inoculation of 6-week-old piglets with 2 ml of PRV N5 B strain(10^6/0.1 ml) led to a mortality rate of 100%. [Conclusion] In this study,genetic variability of g E gene in PRV N5 B isolate and its pathogenicity to piglets were analyzed, which provided a theoretical basis for the development of new vaccines to prevent and control porcine pseudorabies.展开更多
[Objective] The biological characteristics and pathogenicities of Shewanella algae and Shewanella abalone from Babylonia were studied in this paper. [Method]The hemolytic bacteria were isolated from the hepatopancreas...[Objective] The biological characteristics and pathogenicities of Shewanella algae and Shewanella abalone from Babylonia were studied in this paper. [Method]The hemolytic bacteria were isolated from the hepatopancreas of Babylonia suffered from proboscis edema with blood agar plate. The dominant bacterial community in the ill Babylonia was identified by 16 S r DNA sequence analysis, and the bacterial cultural and biochemical characteristics and pathogenicities were studied. [Result]The Shewanella bacteria, including Shewanella algae and Shewanella abalone, are the dominant bacterial community in Babylonia suffered from proboscis edema.The colony characteristics of Shewanella algae in nutrient agar medium, TCBS agar medium and CHROMagar vibrio colored medium were similar to those of Shewanella abalone. Shewanella algae possessed β-hemolysis and Shewanella abalone possessed α-hemolysis in the blood agar plate. The biochemical reaction of Shewanella algae and Shewanella abalone was all of non-fermentation type. The results of artificial infection test showed that half lethal dose(LD50) of the test strains of Shewanella algae was 10-5.50/0.1 ml. The test strains of Shewanella algae have strong toxicity, and could cause mice and chickens to die of sepsis with mortality of100%. The mortality of Babylonia infected with Shewanella algae was 10%; while the survived Babylonia lost the ability of moving and intaking for a long time, but they were not suffered from proboscis edema. There was no death in mice or chicks infected with Shewanella abalone, but their livers and spleens were slightly hyperemic and swelling. There was also no death in Babylonia infected with Shewanella abalone, but their intaking and moving ability was lost for a short time.[Conclusion] Although Shewanella algae and Shewanella abalone were the dominant bacteria in Babylonia suffered from proboscis edema, they were not the main pathogenic bacteria for proboscis edema. Shewanella algae had strong pathogenicity to mice, chicks and Babylonia, while Shewanella abalone showed no marked pathogenicity to those experimental animals in this study.展开更多
基金This work was supported by the National Key Research andDevelopment Programof China(2021YFD1800200 and2021YFC2301700).
文摘The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.
基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030007).
文摘Bordetella bronchiseptica(Bb)is recognized as a leading cause of respiratory diseases in dogs and cats.However,epidemiological data on Bb in dogs and cats in China are still limited,and there is no commercially available vaccine.Live vaccines containing Bb that are widely used abroad are generally efective but can establish latency and potentially reactivate to cause illness in some immunodefcient vaccinated recipients,raising safety concerns.In this study,34 canine-derived and two feline-derived Bb strains were isolated from 1809 canine and 113 feline nasopharyngeal swab samples collected from eight provinces in China from 2021 to 2023.The PCR results showed that the percentage of positive Bb was 22.94%(441/1922),and more than 90%of the Bb isolates had four virulence factor-encoding genes(VFGs),namely,fhaB,prn,betA and dnt.All the isolated strains displayed a multidrug-resistant phenotype.The virulence of 10 Bb strains isolated from dogs with respiratory symptoms was tested in mice,and we found that eight isolates were highly virulent.Furthermore,the eight Bb isolates with high virulence were inactivated and intramuscularly injected into mice,and three Bb strains(WH1218,WH1203 and WH1224)with the best protective efcacy were selected.Dogs immunized with these three strains exhibited strong protection against challenge with the Bb feld strain WH1218.Ultimately,the WH1218 strain with the greatest protection in dogs was selected as the vaccine candidate.Dogs and cats that received a vaccine containing 109 CFU of the inactivated WH1218 strain showed complete protection against challenge with the Bb feld strain WH1218.This study revealed that Bb is an important pathogen that causes respiratory diseases in domestic dogs and cats in China,and all the isolates exhibited multidrug resistance.The present work contributes to the current understanding of the prevalence,antimicrobial resistance,and virulence genes of Bb in domestic dogs and cats.Additionally,our results suggest that the WH1218 strain is a promising candidate safe and efcacious inactivated Bb vaccine.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
文摘The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.
基金supported by the National Natural Science Foundation of China Young Scholars Project(31902242)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(2017–2020)。
文摘Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin production regulation,locus A,herein renamed AbsR,a blood survival regulator),a member of the MarR(multiple antibiotic resistance regulator)transcriptional regulator family,governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.However,a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.In this study,we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq(chromatin immunoprecipitation sequencing)and RNA-Seq(RNA sequencing)methods.We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.Furthermore,we showed that:1)AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster;2)AbsR positively impacts biofilm formation via direct regulation of the T2SS(type II secretion system)but plays a marginal role in virulence;and 3)AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.Finally,our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.Altogether,this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism,and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.Interestingly,we found that AbsR severely represses the expression of the type I-F CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated)systems,which could have implications in CRISPR biology and application.
基金financially supported by the National Nature Science Foundation of China (32372077)the Project of Chongqing Science and Technology Commission (CSTB2023NSCQ-MSX0355)the Fundamental Research Funds for the Central Universities (SWU120075)。
文摘The necrotrophic fungus, Sclerotinia sclerotiorum, employs an array of cell wall-degrading enzymes(CWDEs), including cellulase, to dismantle host cell walls. However, the molecular mechanisms through which S. sclerotiorum degrades cellulose remain elusive. Here, we unveil a novel secretory cellobiohydrolase, SsdchA, characterized by a signal peptide and a Glyco_hydro_7(GH7) domain. SsdchA exhibits a robust expression of during early infection stages. Interestingly, colony morphology and growth rates remain unaffected across the wild-type, SsdchA deletion strains and SsdchA overexpression strains on potato dextrose agar(PDA) medium. Nevertheless, the pathogenicity and cellobiohydrolase activity decreased in the SsdchA deletion strains, but enhanced in the SsdchA overexpression strains. Moreover,the heterologous expression of SsdchA in Arabidopsis thaliana leads to reduced cellulose content and heightened susceptibility to S. sclerotiorum. Collectively, our data underscore the pivotal role of the novel cellobiohydrolase SsdchA in the pathogenicity of S. sclerotiorum.
基金supported by the grants from the Hainan Provincial Natural Science Foundation,China(321QN190 and 321CXTD437)the National Natural Science Foundation of China(32202246 and 32160614)+1 种基金the Open Project Program of Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests,China(MIMCP-202102)the Scientific Research Foundation of Hainan University,China(KYQD(ZR)-21042 and KYQD(ZR)-20080)。
文摘Litchi downy blight,caused by the plant pathogenic oomycete Peronophythora litchii,is one of the most devastating diseases on litchi and resulted in huge economic losses.Autophagy plays an essential role in the development and pathogenicity of the filamentous fungi.However,the function of autophagy in oomycetes remain elusive.Here,an autophagy-related protein Atg3 homolog PlAtg3 was identified and characterized in P.litchii.The absence of PlATG3 through the CRISPR/Cas9 gene replacement strategy compromised vegetative growth and sexual/asexual development.Cytological analyses revealed that the deletion of PlATG3 impaired autophagosome formation with monodansylcadaverine(MDC)staining and significantly disrupted zoospore release due to defects of sporangial cleavage with FM4-64 staining.Atg8 is considered to be an autophagy marker protein in various species.Western blot analysis indicated that PlAtg3 is involved in degradation of PlAtg8-PE.Interestingly,PlAtg3 was unable to interact with PlAtg8 in yeast two hybrid(Y2H)assays,possibly due to the absence of the Atg8 family interacting motif(AIM)in PlAtg3.Furthermore,pathogenicity assays revealed that the deletion of PlATG3 considerably reduced the virulence of P.litchii.Taken together,our data reveal that PlAtg3 plays an important role in radial growth,asexual/sexual development,sporangial cleavage and zoospore release,autophagosome formation,and pathogenicity in P.litchii.This study contributes to a better understanding of the pathogenicity mechanisms of P.litchii and provides insights for the development of more effective strategies to control oomycete diseases.
基金Research and Development Program of China(2023YFD1400200)the Natural Science Foundation of Fujian Province,China(2022J01125)+2 种基金the Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests,China(MIMCP-202301)the Fujian Provincial Science and Technology Key Project,China(2022NZ030014)the National Natural Science Foundation of China(NSFC31871914).
文摘The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair.
文摘AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.
基金supported by grants from the National Natural Science Foundation of China(31901835)the Science and Technology Planning Project of Henan Province of China(212102110145)the International(Regional)Cooperation and Exchange Program of the National Natural Science Foundation of China(31961143018).
文摘Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.
基金supported by the National Natural Science Foundation of China(32202788)the Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG004)+3 种基金the Fund for Shanxi“1331 Project”,China(20211331-13)the Shanxi Province Excellent Doctoral Work Award-Scientific Research Project,China(SXBYKY2021063,SXBYKY2021005,and SXBYKY 2022014)the earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province,China(2023CYJSTX15-13)the Fundamental Research Program of Shanxi Province,China(202103021224156)。
文摘Avian infectious bronchitis(IB)is a highly contagious infectious disease caused by infectious bronchitis virus(IBV),which is prevalent in many countries worldwide and causes serious harm to the poultry industry.At present,many commercial IBV vaccines have been used for the prevention and control of IB;however,IB outbreaks occur frequently.In this study,two new strains of IBV,SX/2106 and SX/2204,were isolated from two flocks which were immunized with IBV H120 vaccine in central China.Phylogenetic and recombination analysis indicated that SX/2106,which was clustered into the GI-19 lineage,may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage,which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death,and H120 immunization could not provide effective protection against the two IBV isolates.It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously,with a mortality rate up to 60%.Considering the continuous mutation and recombination of the IBV genome to produce new variant strains,it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics.
基金supported by the National Natural Science Foundation of China(82200725)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)+4 种基金the Fundamental Research Funds for the Central Universities(226-2023-00114,226-2022-00226,and 226-2023-00059)the Key Program of National Natural Science Foundation of China(81930016)the Key Research and Development Program of China(2021YFA1100500)the Major Research Plan of the National Natural Science Foundation of China(92159202)the Ningbo Top Medical and Health Research Program(2022030309).
文摘Liver transplantation(LT)is the standard therapy for individuals afflicted with end-stage liver disease.Despite notable advancements in LT technology,the incidence of early allograft dysfunction(EAD)remains a critical concern,exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients.Unfortunately,the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD.Herein,we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients,with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages.Comparison of the 75231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells,granzyme B^(+)(GZMB^(+))granzyme K^(+)(GZMK^(+))natural killer cells,and S100 calcium binding protein A12^(+)(S100A12^(+))neutrophils.Moreover,we verified this immune niche and its association with EAD occurrence in two independent cohorts.Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level,thus,offering valuable insights into EAD onset.
基金Supported by Shenzhen Science and Technology Program,Shenzhen,China(No.JCYJ20200109145001814,No.SGDX20211123120001001)the National Natural Science Foundation of China(No.81970790)Sanming Project of Medicine in Shenzhen(No.SZSM202011015).
文摘AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.
基金Supported by Project of Collaborative Innovation Center of GDAAS-XTXM202202(XT202211)The Introduction of Icientific and Iechnological Ialents of Guangdong Academy of Agricultural Sciences(R2021YJ-YB3020).
文摘Eighteen blast isolates were obtained from hybrid combination Wuyou308 using the Magnaporthe oryzae pathogen isolation method.Race identification of these isolates was conducted based on seven Chinese blast differentials and 11 blast monogenic lines.The results indicated that the isolates were identified as the races of ZB13,ZB15 and ZC13,accounting for 66.67%,27.78%,5.56%,respectively,and the resistance genes including Pi-ta2 and Pi-sh,Pi-i were highly susceptible to these isolates,while the resistance genes like Pi-kh,Pi-1,Pi2,Pi-9 and Pi-50 showed good resistance to tested pathogens.All isolates were compatible to the original rice hybrid Wuyou308.Three isolates including GDHY-308-1401 were used for testing their pathogenicity to 45 local varieties.The results demonstrated that 13 varieties appeared highly susceptible to the tested isolates,accounting for 28.89%;two varieties appeared moderately susceptible to the tested isolates,accounting for 4.44%;30 varieties showed moderately/highly resistance,accounting for 66.67%.Among them,some of new hybrid combinations such as Wufengyou 9802,Wuyou 613,Wuyou 1179 showed good resistance to the inoculated strains,and they were recommended to be candidates in the rice region where Wuyou308 showed susceptibility.
基金Supported by Science and Technology Plan Project of Guizhou Province,China(QKH JC[2020]1Y179)Key Field Project of Education Department of Guizhou Province(QJHKYZ[2021]044)+1 种基金Forestry Research Project of Guizhou Province(QLKH[2021]11)Project of Guizhou Provincial Characteristic Key Laboratory(QJHKY[2021]002).
文摘[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus establish a systematic model of bacteria-fungus-plant.[Methods]Fifty-eight strains of bacteria and one strain of pathogenic fungi,Globisporangium ultimatum,were used for the experiments.These 58 bacterial strains were assembled into a bacterial community,and the bacteria with abundance in the top 1%were reassembled into a dominant bacterial community as measured by 16S rDNA.[Results]The growth of A.annua seedlings inoculated with bacterial communities and pathogenic fungi or dominant bacterial communities and pathogenic fungi was significantly better than that of A.annua seedlings inoculated with pathogenic fungi during in vitro confrontation,which was evident in both enzymatic and non-enzymatic antioxidant assays.[Conclusions]The results suggest that the dominant bacterial community has a crucial role as a representative core microbial community of synthetic bacterial community,which can protect plants by interfering with the growth of phytopathogenic fungi mediated by chemical signals,and can be used as the main synthetic community of biocides to achieve the effect of biocontrol.
文摘BACKGROUND The prevalence of germline pathogenic variants in high hereditary risk breast and/or ovarian cancer patients and unaffected subjects referred for testing is an unmet need in low and middle-income countries.AIM To determine the prevalence of germline pathogenic variants in high hereditary risk patients with breast and/or ovarian cancer and unaffected individuals.METHODS We retrospectively reviewed records of patients and unaffected subjects referred for germline pathogenic variant testing due to high hereditary risk between 2010-2020.Data was collected and analyzed on Excel sheet.RESULTS In total,358 individuals were included,including 257 patients and 101 unaffected individuals with relatives with breast or ovarian cancer.The prevalence of breast cancer susceptibility gene(BRCA)1/2 pathogenic variants was 8.63%(19/220)in patients with breast cancer,and 15.1%(5/33)in those with ovarian cancer.Among the 25 of 220 patients with breast cancer tested by next-generation sequencing,3 patients had pathogenic variants other than BRCA1/2.The highest risk was observed in those aged 40 years with breast cancer and a positive family history,where the BRCA1/2 prevalence was 20.1%(9/43).Among the unaffected subjects,31.1%(14/45)had the same BRCA1/2 pathogenic variants in their corresponding relatives.Among the subjects referred because of a positive family history of cancer without known hereditary factors,5.35%(3/56)had pathogenic variants of BRCA1 and BRCA2.The c.131G>T nucleotide change was noted in one patient and two unrelated unaffected subjects with a BRCA1 pathogenic variant.CONCLUSION This study showed a 8.63%prevalence of pathogenic variants in patients with breast cancer and a 15.1%prevalence in patients with ovarian cancer.Among the relatives of patients with BRCA1/2 pathogenic variants,31%tested positive for the same variant,while 5.3%of subjects who tested positive due to a family history of breast cancer had a BRCA pathogenic variant.
基金Supported by Youth Foundation of Education Department in Sichuan Province (07ZB060)Youth Science and Technology Innovation Fund in Sichuan Agricultural University~~
文摘[Objective] The pathogenic Escherichia coli in musk deer was classified at molecular level to provide basic materials for molecular epidemiology of pathogenic Escherichia coli in musk deer. [Method] Plasmids from 24 pathogenic Escherichia coli in musk deer were extracted by the Lysis Triton method, and then identified by single enzyme digestion with three endonucleases of Hind Ⅲ, EcoR Ⅰ and BamH Ⅰ. [Result] The yield rate of plasmids was 91.6%, and 24 pathogenic Escherichia coli in musk deer had the identical or similar plasmid profiles. [Conclusion] Plasmid DNA analysis offers scientific basis for molecular epidemiology of pathogenic Escherichia coli in musk deer in Sichuan Institute of Musk Deer Breeding.
文摘[ Objective] The aim of this study was to provide a theoretical basis for the prevention and treatment of highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS). [Method] Antigen location and histopathological observation in natural cases infected by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) were analyzed by immunohistochemistry and H. E. staining. [Result] The virus antigen mainly existed in epithelial calls, and also a few in mecrophages, lymphocytes and brain nerve cells. [ Conclusion] The cell and tissue tropism of HP-PRRSV strain in natural cases is different from that of previous strains.
基金Supported by Natural Science Foundation of Jiangsu Province(BK20131334)Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu Province[CX(13)3069]~~
文摘[Objective] This study aimed to investigate the genetic variation of g E gene of an epidemic pseudorabies virus(PRV) strain and its pathogenicity to piglets. [Method] By serial passage in Vero cells, a PRV strain was isolated from the brain tissues of stillborn fetuses delivered by sows with suspected PRV infection and preliminarily identified by PCR. g E gene of the isolated PRV strain was amplified and sequenced for phylogenetic analysis. In addition, the pathogenicity of the isolated PRV strain to 6-week-old piglets was evaluated. [Result] A PRV strain was successfully isolated and named PRV N5 B strain, which could proliferate in Vero cells and TCID50 of the 15 thgeneration virus liquid reached 10^7.125/0.1 ml. Specific bands could be amplified by PCR. g E gene in the isolated PRV strain was 1 740 bp in length. A phylogenetic tree was constructed based on full-length g E sequences, which showed that PRV N5 B strain and PRV strains isolated since 2012 were clustered into the same independent category and shared 99.7%-100% homology of nucleotide sequences. Compared with related sequences published previously, there were insertions of three consecutive bases at two loci. Animal experiments showed that intranasal inoculation of 6-week-old piglets with 2 ml of PRV N5 B strain(10^6/0.1 ml) led to a mortality rate of 100%. [Conclusion] In this study,genetic variability of g E gene in PRV N5 B isolate and its pathogenicity to piglets were analyzed, which provided a theoretical basis for the development of new vaccines to prevent and control porcine pseudorabies.
基金Supported by Special Project for Marine Fisheries Science and Technology and Industrial Development of Guangdong Province(A201508A05)Regional Demonstration Project of Marine Economy Innovation and Development of Guangdong Province(GD2012-A03-012)~~
文摘[Objective] The biological characteristics and pathogenicities of Shewanella algae and Shewanella abalone from Babylonia were studied in this paper. [Method]The hemolytic bacteria were isolated from the hepatopancreas of Babylonia suffered from proboscis edema with blood agar plate. The dominant bacterial community in the ill Babylonia was identified by 16 S r DNA sequence analysis, and the bacterial cultural and biochemical characteristics and pathogenicities were studied. [Result]The Shewanella bacteria, including Shewanella algae and Shewanella abalone, are the dominant bacterial community in Babylonia suffered from proboscis edema.The colony characteristics of Shewanella algae in nutrient agar medium, TCBS agar medium and CHROMagar vibrio colored medium were similar to those of Shewanella abalone. Shewanella algae possessed β-hemolysis and Shewanella abalone possessed α-hemolysis in the blood agar plate. The biochemical reaction of Shewanella algae and Shewanella abalone was all of non-fermentation type. The results of artificial infection test showed that half lethal dose(LD50) of the test strains of Shewanella algae was 10-5.50/0.1 ml. The test strains of Shewanella algae have strong toxicity, and could cause mice and chickens to die of sepsis with mortality of100%. The mortality of Babylonia infected with Shewanella algae was 10%; while the survived Babylonia lost the ability of moving and intaking for a long time, but they were not suffered from proboscis edema. There was no death in mice or chicks infected with Shewanella abalone, but their livers and spleens were slightly hyperemic and swelling. There was also no death in Babylonia infected with Shewanella abalone, but their intaking and moving ability was lost for a short time.[Conclusion] Although Shewanella algae and Shewanella abalone were the dominant bacteria in Babylonia suffered from proboscis edema, they were not the main pathogenic bacteria for proboscis edema. Shewanella algae had strong pathogenicity to mice, chicks and Babylonia, while Shewanella abalone showed no marked pathogenicity to those experimental animals in this study.