In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in ste...In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.展开更多
In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose...In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose proof are based on the technique of local time.展开更多
Let M = {M<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>} be a continuous square integrable martingale and A = {A<sub>z</sub>, z∈ R<sub>+</sub><sup>2</...Let M = {M<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>} be a continuous square integrable martingale and A = {A<sub>z</sub>, z∈ R<sub>+</sub><sup>2</sup>} be a continuous adapted increasing process. Consider the following stochastic partial differential equations in the plane: dX<sub>z</sub>=α(z, X<sub>z</sub>)dM<sub>2</sub>+β(z,X<sub>z</sub>)dA<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>, X<sub>z</sub>=Z<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>, where R<sub>+</sub><sup>2</sup>=[0,+∞)×[0,+∞) and R<sub>+</sub><sup>2</sup> is its boundary, Z is a continuous stochastic process on R<sub>+</sub><sup>2</sup>. We establish a new theorem on the pathwise uniqueness of solutions for the equation under a weaker condition than the Lipschitz one. The result concerning the one-parameter analogue of the problem we consider here is immediate (see [1, Theorem 3.2]). Unfortunately, the situation is much more complicated for two-parameter process and we believe that our result is the first one of its kind and is interesting in itself. We have proved the existence theorem for the equation in.展开更多
基金Foundation item: Hubei University Youngth Foundations (099206).
文摘In this paper we prove the pathwise uniqueness of a kind of two-parameter Volterra type stochastic differential equations under the coefficients satisfy the non-Lipschitz conditions. We use a martingale formula in stead of Ito formula, which leads to simplicity the process of proof and extends the result to unbounded coefficients case.
基金supported by the National Natural Science Foundation of China (No.12261038, 11671408 and11871484)Natural Science Foundation of Jiangxi Province (No.20232BAB201004, 20212BAB201009)Training Program of Young Talents for academic and technical leaders of major disciplines in Jiangxi Province(No.20204BCJL23057)。
文摘In this paper, we are concerned with the problem of the pathwise uniqueness of one-dimensional reflected stochastic differential equations with jumps under the assumption of non-Lipschitz continuous coefficients whose proof are based on the technique of local time.
基金Supported by the National Science Foundationthe Postdoctoral Science Foundation of China
文摘Let M = {M<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>} be a continuous square integrable martingale and A = {A<sub>z</sub>, z∈ R<sub>+</sub><sup>2</sup>} be a continuous adapted increasing process. Consider the following stochastic partial differential equations in the plane: dX<sub>z</sub>=α(z, X<sub>z</sub>)dM<sub>2</sub>+β(z,X<sub>z</sub>)dA<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>, X<sub>z</sub>=Z<sub>z</sub>, z∈R<sub>+</sub><sup>2</sup>, where R<sub>+</sub><sup>2</sup>=[0,+∞)×[0,+∞) and R<sub>+</sub><sup>2</sup> is its boundary, Z is a continuous stochastic process on R<sub>+</sub><sup>2</sup>. We establish a new theorem on the pathwise uniqueness of solutions for the equation under a weaker condition than the Lipschitz one. The result concerning the one-parameter analogue of the problem we consider here is immediate (see [1, Theorem 3.2]). Unfortunately, the situation is much more complicated for two-parameter process and we believe that our result is the first one of its kind and is interesting in itself. We have proved the existence theorem for the equation in.