BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have ...BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.展开更多
BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To ex...BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To explore the clinical characteristics,treatment patterns,and short-term outcomes in CEG patients in China.METHODS We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology.Patients and treating physicians completed a questionnaire regarding history,endoscopic findings,and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment.RESULTS Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included.Epigastric pain(68.0%),abdominal distension(62.6%),and postprandial fullness(47.5%)were the most common presenting symptoms.Gastritis was classified as chronic non-atrophic in 69.9%of patients.Among those with erosive lesions,72.1%of patients had lesions in the antrum,51.0%had multiple lesions,and 67.3%had superficial flat lesions.In patients with epigastric pain,the combination of a mucosal protective agent(MPA)and proton pump inhibitor was more effective.For those with postprandial fullness,acid regurgitation,early satiety,or nausea,a MPA appeared more promising.CONCLUSION CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms.Gastroscopy may play a major role in its detection and diagnosis.Treatment should be individualized based on symptom profile.展开更多
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im...The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.展开更多
Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation...Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation of the prospective associations among three predefined indices of plant-based dietary patterns and the risk of EC.Methods: We performed endoscopic screening for 15,709 participants aged 40-69 years from two high-risk areas of China from January 2005 to December 2009 and followed the cohort until December 31, 2022. The overall plant-based diet index(PDI), healthful plant-based diet index(h PDI), and unhealthful plant-based diet index(u PDI), were calculated using survey responses to assess dietary patterns. We applied Cox proportional hazard regression to estimate the multivariable hazard ratios(HRs) and 95% confidence intervals(95% CIs) of EC across 3plant-based diet indices and further stratified the analysis by subgroups.Results: The final study sample included 15,184 participants in the cohort. During a follow-up of 219,365person-years, 176 patients with EC were identified. When the highest quartile was compared with the lowest quartile, the pooled multivariable-adjusted HR of EC was 0.50(95% CI, 0.32-0.77) for h PDI. In addition, the HR per 10-point increase in the h PDI score was 0.42(95% CI, 0.27-0.66) for ECs. Conversely, u PDI was positively associated with the risk of EC, and the HR was 1.80(95% CI, 1.16-2.82). The HR per 10-point increase in the u PDI score was 1.90(95% CI, 1.26-2.88) for ECs. The associations between these scores and the risk of EC were consistent in most subgroups. These results remained robust in sensitivity analyses.Conclusions: A healthy plant-based dietary pattern was associated with a reduced risk of EC. Emphasizing the healthiness and quality of plant-based diets may be important for preventing the development of EC.展开更多
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte...Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.展开更多
The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted...The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.展开更多
Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger wit...Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.展开更多
Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation...Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation and a locally active memristor serves as a synapse,are formulated to investigate the impact of a memristor on a two-dimensional Hindmarsh-Rose neuron model.Numerical simulations show that the neuronal models in different scenarios have multiple burst firing patterns.The introduction of the memristor makes the neuronal model exhibit complex dynamical behaviors.Finally,the simulation circuit and DSP hardware implementation results validate the physical mechanism,as well as the reliability of the biological neuron model.展开更多
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with rem...Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels.展开更多
A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled...A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.展开更多
Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitud...Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.展开更多
The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal p...The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.展开更多
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative dif...Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.展开更多
Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re...Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.展开更多
Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics b...Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.展开更多
Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typica...Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.展开更多
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter...Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.展开更多
文摘BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.
基金the National Key Clinical Specialty Construction Project,No.ZK108000CAMS Innovation Fund for Medical Sciences,No.2021-I2M-C&T-A-001 and No.2022-I2M-C&T-B-012.
文摘BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To explore the clinical characteristics,treatment patterns,and short-term outcomes in CEG patients in China.METHODS We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology.Patients and treating physicians completed a questionnaire regarding history,endoscopic findings,and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment.RESULTS Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included.Epigastric pain(68.0%),abdominal distension(62.6%),and postprandial fullness(47.5%)were the most common presenting symptoms.Gastritis was classified as chronic non-atrophic in 69.9%of patients.Among those with erosive lesions,72.1%of patients had lesions in the antrum,51.0%had multiple lesions,and 67.3%had superficial flat lesions.In patients with epigastric pain,the combination of a mucosal protective agent(MPA)and proton pump inhibitor was more effective.For those with postprandial fullness,acid regurgitation,early satiety,or nausea,a MPA appeared more promising.CONCLUSION CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms.Gastroscopy may play a major role in its detection and diagnosis.Treatment should be individualized based on symptom profile.
基金supported by the National Research Foundation of Korea Grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.
基金supported by grants from the Beijing Nova Program (No. Z201100006820069)CAMS Innovation Fund for Medical Sciences (CIFMS, No. 2021-I2M-1-023, 2021-I2M-1-010)Talent Incentive Program of Cancer Hospital Chinese Academy of Medical Sciences (Hope Star)。
文摘Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation of the prospective associations among three predefined indices of plant-based dietary patterns and the risk of EC.Methods: We performed endoscopic screening for 15,709 participants aged 40-69 years from two high-risk areas of China from January 2005 to December 2009 and followed the cohort until December 31, 2022. The overall plant-based diet index(PDI), healthful plant-based diet index(h PDI), and unhealthful plant-based diet index(u PDI), were calculated using survey responses to assess dietary patterns. We applied Cox proportional hazard regression to estimate the multivariable hazard ratios(HRs) and 95% confidence intervals(95% CIs) of EC across 3plant-based diet indices and further stratified the analysis by subgroups.Results: The final study sample included 15,184 participants in the cohort. During a follow-up of 219,365person-years, 176 patients with EC were identified. When the highest quartile was compared with the lowest quartile, the pooled multivariable-adjusted HR of EC was 0.50(95% CI, 0.32-0.77) for h PDI. In addition, the HR per 10-point increase in the h PDI score was 0.42(95% CI, 0.27-0.66) for ECs. Conversely, u PDI was positively associated with the risk of EC, and the HR was 1.80(95% CI, 1.16-2.82). The HR per 10-point increase in the u PDI score was 1.90(95% CI, 1.26-2.88) for ECs. The associations between these scores and the risk of EC were consistent in most subgroups. These results remained robust in sensitivity analyses.Conclusions: A healthy plant-based dietary pattern was associated with a reduced risk of EC. Emphasizing the healthiness and quality of plant-based diets may be important for preventing the development of EC.
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
基金provided by the National Natural Science Foundation of China(Grants No.12272238 and No.11932013)the"Outstanding Young Scholar"Program of Shanghai Municipalthe"Dawn"Program of Shanghai Education Commission(Grant No.19SG47)。
文摘Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.
文摘The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.
基金Project supported by the Special Funds for Basic Operating Expenses of the Centre University of China (Grant No.23ZYJS006)。
文摘Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.
基金supported by the National Natural Science Foundation of China(Grant No.62061014)Technological Innovation Projects in the Field of Artificial Intelligence in Liaoning province(Grant No.2023JH26/10300011)Basic Scientific Research Projects in Department of Education of Liaoning Province(Grant No.JYTZD2023021).
文摘Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation and a locally active memristor serves as a synapse,are formulated to investigate the impact of a memristor on a two-dimensional Hindmarsh-Rose neuron model.Numerical simulations show that the neuronal models in different scenarios have multiple burst firing patterns.The introduction of the memristor makes the neuronal model exhibit complex dynamical behaviors.Finally,the simulation circuit and DSP hardware implementation results validate the physical mechanism,as well as the reliability of the biological neuron model.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.2021R1C1C1007997).
文摘Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels.
基金supported by the National Natural Science Foundation of China(Nos.31972929 and 62231025)the Research Program of Shanghai Science and Technology Committee(Nos.21140901300 and 20DZ2220400)+3 种基金the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0767)the Interdisciplinary Program of Shanghai Jiao Tong University(Nos.YG2021ZD22 and YG2023LC04)the Foundation of National Center for Translational Medicine(Shanghai)SHU Branch(No.SUITM-2023008)the Cross-disciplinary Research Fund of Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(No.JYJC202108).
文摘A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26040202)the National Natural Science Foundation of China(41173083)+1 种基金SL was also supported by the National Natural Science Foundation of China(32001165)the Natural Science Foundation of Sichuan Province(2022NSFSC1753)。
文摘Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.
基金funded by the Natural Science Foundation of China (Grant No. 42271030)Fujian Provincial Funds for Distinguished Young Scientists (Grant No. 2022J06018)Applied Basic Research Programs of Yunnan province (Grant No. 202001BB050073)。
文摘The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32271293 and 11875076)。
文摘Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.
文摘Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.
文摘Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.
基金supported by the National Natural Science Foundation of China Joint Fund Project (Grant/Award Number: U20B6003)National Natural Science Foundation of China (Grant/Award Number: 52304054)。
文摘Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.
基金Under the auspices of the Fund of Social Sciences Research,Ministry of Education of China(No.17YJA840011)。
文摘Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.