The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks....The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks.This paper presents a multilevel pattern mining architecture to support automatic network management by discovering interesting patterns from telecom network monitoring data.This architecture leverages and combines existing frequent itemset discovery over data streams,association rule deduction,frequent sequential pattern mining,and frequent temporal pattern mining techniques while also making use of distributed processing platforms to achieve high-volume throughput.展开更多
Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a ma...Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm^2 (estimated PCE of 12.8%) and 19.2 μW/cm^2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm^2 under an illumination of 1 sun.展开更多
Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. Ho...Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. However, the simultaneous two-dimensional(2D) or three-dimensional(3D) deformation measurements using ESPI with phase shifting usually involve complicated and slow equipment. In this Letter, we solve these issues by proposing a modified ESPI system based on double phase modulations with only one laser and one camera. In-plane normal and shear strains are obtained with good quality. This system can also be developed to measure 3D deformation, and it has the potential to carry out faster measurements with a highspeed camera.展开更多
基金funded by the Enterprise Ireland Innovation Partnership Programme with Ericsson under grant agreement IP/2011/0135[6]supported by the National Natural Science Foundation of China(No.61373131,61303039,61232016,61501247)+1 种基金the PAPDCICAEET funds
文摘The rapid development of network technology and its evolution toward heterogeneous networks has increased the demand to support automatic monitoring and the management of heterogeneous wireless communication networks.This paper presents a multilevel pattern mining architecture to support automatic network management by discovering interesting patterns from telecom network monitoring data.This architecture leverages and combines existing frequent itemset discovery over data streams,association rule deduction,frequent sequential pattern mining,and frequent temporal pattern mining techniques while also making use of distributed processing platforms to achieve high-volume throughput.
文摘Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm^2 (estimated PCE of 12.8%) and 19.2 μW/cm^2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm^2 under an illumination of 1 sun.
基金financially supported by the ANR Micromorfing Program(ANR-14-CE07-0035)China Scholarship Council(CSC)the Labex Action
文摘Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. However, the simultaneous two-dimensional(2D) or three-dimensional(3D) deformation measurements using ESPI with phase shifting usually involve complicated and slow equipment. In this Letter, we solve these issues by proposing a modified ESPI system based on double phase modulations with only one laser and one camera. In-plane normal and shear strains are obtained with good quality. This system can also be developed to measure 3D deformation, and it has the potential to carry out faster measurements with a highspeed camera.