Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the inp...Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
A synchronous buck DC-DC converter with an adaptive multi-mode controller is proposed.In order to achieve high efficiency over its entire load range,pulse-width modulation(PWM),pulse-skip modulation(PSM) and pulse...A synchronous buck DC-DC converter with an adaptive multi-mode controller is proposed.In order to achieve high efficiency over its entire load range,pulse-width modulation(PWM),pulse-skip modulation(PSM) and pulse-frequency modulation(PFM) modes were integrated in the proposed DC-DC converter.With a highly accurate current sensor and a dynamic mode controller on chip,the converter can dynamically change among PWM, PSM and PFM control according to the load requirements.In addition,to avoid power device damage caused by inrush current at the start up state,a soft-start circuit is presented to suppress the inrush current.Furthermore,an adaptive slope compensation(SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50%,and improve the degraded load capability due to traditional slope compensation.The buck converter chip was simulated and manufactured under a 0.35μm standard CMOS process.Experimental results show that the chip can achieve 79%to 91%efficiency over the load range of 0.1 to 1000 mA.展开更多
To improve the compensation for the inherent instability in a current mode converter, the adaptive slope compensation, giving attention to the problems of the traditional compensation on compensation accuracy, loading...To improve the compensation for the inherent instability in a current mode converter, the adaptive slope compensation, giving attention to the problems of the traditional compensation on compensation accuracy, loading capability and turning jitter, is presented. Based on the analysis of current loop, by detecting the input and output voltage, converting the adaptive slope compensation current, the compensation of the current loop is optimized successfully. It can not only improve the compensation accuracy but also eliminate the over compensation, the turning jitter and the poor loading capability in the reported slope compensation. A power supply chip with adaptive slope compensation has been fabricated in a 0.35 μm CMOS process. The measurement results show that the chip starts up and operates steadily with the constant current limit under conditions of 5 V input voltage, from 10% to 100% duty cycle.展开更多
文摘Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.
基金supported by the Major National Scientific Research Plan,China(No.201 1CB933202)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘A synchronous buck DC-DC converter with an adaptive multi-mode controller is proposed.In order to achieve high efficiency over its entire load range,pulse-width modulation(PWM),pulse-skip modulation(PSM) and pulse-frequency modulation(PFM) modes were integrated in the proposed DC-DC converter.With a highly accurate current sensor and a dynamic mode controller on chip,the converter can dynamically change among PWM, PSM and PFM control according to the load requirements.In addition,to avoid power device damage caused by inrush current at the start up state,a soft-start circuit is presented to suppress the inrush current.Furthermore,an adaptive slope compensation(SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50%,and improve the degraded load capability due to traditional slope compensation.The buck converter chip was simulated and manufactured under a 0.35μm standard CMOS process.Experimental results show that the chip can achieve 79%to 91%efficiency over the load range of 0.1 to 1000 mA.
基金Project supported by the National Defense Pre-Research Project of China(No.51308010610)
文摘To improve the compensation for the inherent instability in a current mode converter, the adaptive slope compensation, giving attention to the problems of the traditional compensation on compensation accuracy, loading capability and turning jitter, is presented. Based on the analysis of current loop, by detecting the input and output voltage, converting the adaptive slope compensation current, the compensation of the current loop is optimized successfully. It can not only improve the compensation accuracy but also eliminate the over compensation, the turning jitter and the poor loading capability in the reported slope compensation. A power supply chip with adaptive slope compensation has been fabricated in a 0.35 μm CMOS process. The measurement results show that the chip starts up and operates steadily with the constant current limit under conditions of 5 V input voltage, from 10% to 100% duty cycle.