This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output paramete...This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
The asymmetric dual-three phase BLDC motor has two sets of stator windings,in which the back EMF coefficients are different.This paper takes advantage of the asymmetric dual-three phase BLDC motor’s structural featur...The asymmetric dual-three phase BLDC motor has two sets of stator windings,in which the back EMF coefficients are different.This paper takes advantage of the asymmetric dual-three phase BLDC motor’s structural features and proposes a new method for the accelerated problem of the BLDC motor operating in the high speed and the constant electromagnetic power.The dual phase windings of the BLDC motor are integrated into the circuit in the starting stage.When the motor’s back EMF value is equal to the terminal voltage value,switch off a set of RST three phase windingswhose back EMF coefficient is bigger and make the other set of stator windingUVWwith smaller back EMF coefficient continue to operate under the rated power.As the motor rotor speed continues to increase,the electromagnetic torque remains unchanged.By using the peak current control strategy,we can deduce that the phase current of the UVW three-phase winding is twice the RSTthree-phase windingwhen the asymmetric dual-three phase BLDC motor operates at high speed and constant power.展开更多
Wind power control technology is an important part of intelligent control in wind farms. By the automatic calculation and implementation of control strategy, problems such as imprecise of manual control scheduling, sl...Wind power control technology is an important part of intelligent control in wind farms. By the automatic calculation and implementation of control strategy, problems such as imprecise of manual control scheduling, slow adjust rate, heavy workload, etc. have been solved. It can improve the capacity of wind power grid, and it also has the important meaning to the safe and stable operation of power grid. This paper introduces wind power control system from certain aspects such as control mode, control principle, and so on.展开更多
Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak disch...Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak discharge control by a small reservoir (control reservoir) caused by rapidly developed urbanization. Although work for this purpose was conducted, research on the effects of the control reservoir was not conducted until now. This research, conducted by simulation, was a case study in the Kurabe River Basin in the Tedori River Alluvial Fan Area, Japan, based on the precise investigation of the reservoir in the actual field. The study was conducted to determine not only the actual control reservoir capacity for the newly developed residential area but also the ideal capacity for all present residential areas and the largest capacity allowable for a maximum rainfall event that recently occurred. The control reservoir effects between individual blocks and the entire basin area were compared by dividing the test basin into 15 blocks (sub-basins). The results showed that the effects on the capacity per unit area of the residential area in blocks have close relationship with the decreasing ratio of peak discharge in blocks. Consequently, the effects of control reservoir capacity and the limitation were clarified. In the future, control reservoirs should be constructed for all of the already developed residential areas, for example, by utilizing underground car parking lot. The results of this research can contribute to the design of the control reservoir for protection against flooding damage in urbanized areas.展开更多
As the largest source of carbon emissions in China,the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle.Its conversion to clean-energy generation tec...As the largest source of carbon emissions in China,the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle.Its conversion to clean-energy generation technologies is also an important means of reducing CO_(2)emissions and achieving the carbon peak and carbon neutral commitments.This study used fractional Brownian motion to describe the energy-switching cost and constructed a stochastic optimization model on carbon allowance(CA)trading volume and emission-reduction strategy during compliance period with the Hurst exponent and volatility coefficient in the model estimated.We defined the optimal compliance cost of thermal power enterprises as the form of the unique solution of the Hamilton–Jacobi–Bellman equation by combining the dynamic optimization principle and the fractional It?’s formula.In this manner,we obtained the models for optimal emission reduction and equilibrium CA price.Our numerical analysis revealed that,within a compliance period of 2021–2030,the optimal reductions and desired equilibrium prices of CAs changed concurrently,with an increasing trend annually in different peak-year scenarios.Furthermore,sensitivity analysis revealed that the energy price indirectly affected the equilibrium CA price by influencing the Hurst exponent,the depreciation rate positively impacted the CA price,and increasing the initial CA reduced the optimal reduction and the CA price.Our findings can be used to develop optimal emission-reduction strategies for thermal power enterprises and carbon pricing in the carbon market.展开更多
实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足...实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足。针对这一问题,提出一种基于布谷鸟搜索算法(cuckoo search algorithm, CS)和电导增量法(conductivity increment method, CI)结合的光伏MPPT算法,在算法前期利用布谷鸟搜索算法将大步长和小步长交替使用使得全局搜索能力增强,找到全局最大功率点所处区域附近;在后期,采用步长小、控制精度高的CI进行局部寻优,快速准确地锁定到最大功率点。在MATLAB/Simulink中搭建仿真模型,并与原始布谷鸟搜索算法和粒子群优化(particle swam optimization, PSO)算法进行比较。仿真结果表明,将CS与CI结合的算法使得收敛速度更快,精度更高,稳定状态时功率曲线的波动更小。展开更多
文摘This paper presents a synthesis of current-mode PI, PD and PID controllers employing current controlled current differential buffer amplifiers (CCCDBAs). The features of these controllers are that: the output parameters can be electronically/independently controlled by adjusting corresponding bias currents in the proportional, integral, and deviation controllers;circuit description of the PID controller is simply formulated, it consists of four CCCDBAs cooperating with two grounded capacitors, and PI and PD controllers are composed of three CCCCDBAs and a grounded capacitor. Without any external resistor, the proposed circuits are very suitable to develop into integrated circuit architecture. The given results from the PSpice simulation agree well with the theoretical anticipation. The approximate power consumption in a closed loop control system consisting of the PI, PD and PID controller with low-pass filter passive plant are 4.03 mW, 4.85 mW and 5.71 mW, respectively, at ±1.5 V power supply voltages.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61773006。
文摘The asymmetric dual-three phase BLDC motor has two sets of stator windings,in which the back EMF coefficients are different.This paper takes advantage of the asymmetric dual-three phase BLDC motor’s structural features and proposes a new method for the accelerated problem of the BLDC motor operating in the high speed and the constant electromagnetic power.The dual phase windings of the BLDC motor are integrated into the circuit in the starting stage.When the motor’s back EMF value is equal to the terminal voltage value,switch off a set of RST three phase windingswhose back EMF coefficient is bigger and make the other set of stator windingUVWwith smaller back EMF coefficient continue to operate under the rated power.As the motor rotor speed continues to increase,the electromagnetic torque remains unchanged.By using the peak current control strategy,we can deduce that the phase current of the UVW three-phase winding is twice the RSTthree-phase windingwhen the asymmetric dual-three phase BLDC motor operates at high speed and constant power.
文摘Wind power control technology is an important part of intelligent control in wind farms. By the automatic calculation and implementation of control strategy, problems such as imprecise of manual control scheduling, slow adjust rate, heavy workload, etc. have been solved. It can improve the capacity of wind power grid, and it also has the important meaning to the safe and stable operation of power grid. This paper introduces wind power control system from certain aspects such as control mode, control principle, and so on.
文摘Recently severe damage of flooding by urbanization was frequently occurred. To prevent this damage, small reservoir was constructed in the urbanized residential area. This paper describes an effect of flood peak discharge control by a small reservoir (control reservoir) caused by rapidly developed urbanization. Although work for this purpose was conducted, research on the effects of the control reservoir was not conducted until now. This research, conducted by simulation, was a case study in the Kurabe River Basin in the Tedori River Alluvial Fan Area, Japan, based on the precise investigation of the reservoir in the actual field. The study was conducted to determine not only the actual control reservoir capacity for the newly developed residential area but also the ideal capacity for all present residential areas and the largest capacity allowable for a maximum rainfall event that recently occurred. The control reservoir effects between individual blocks and the entire basin area were compared by dividing the test basin into 15 blocks (sub-basins). The results showed that the effects on the capacity per unit area of the residential area in blocks have close relationship with the decreasing ratio of peak discharge in blocks. Consequently, the effects of control reservoir capacity and the limitation were clarified. In the future, control reservoirs should be constructed for all of the already developed residential areas, for example, by utilizing underground car parking lot. The results of this research can contribute to the design of the control reservoir for protection against flooding damage in urbanized areas.
基金like to thank Major Program of National Philosophy and Social Science Foundation of China(Grant No.21ZDA086)National Natural Science Foundation of China(Grant No.71974188),and Jiangsu Soft Science Fund(Grant No.BR2022007).
文摘As the largest source of carbon emissions in China,the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle.Its conversion to clean-energy generation technologies is also an important means of reducing CO_(2)emissions and achieving the carbon peak and carbon neutral commitments.This study used fractional Brownian motion to describe the energy-switching cost and constructed a stochastic optimization model on carbon allowance(CA)trading volume and emission-reduction strategy during compliance period with the Hurst exponent and volatility coefficient in the model estimated.We defined the optimal compliance cost of thermal power enterprises as the form of the unique solution of the Hamilton–Jacobi–Bellman equation by combining the dynamic optimization principle and the fractional It?’s formula.In this manner,we obtained the models for optimal emission reduction and equilibrium CA price.Our numerical analysis revealed that,within a compliance period of 2021–2030,the optimal reductions and desired equilibrium prices of CAs changed concurrently,with an increasing trend annually in different peak-year scenarios.Furthermore,sensitivity analysis revealed that the energy price indirectly affected the equilibrium CA price by influencing the Hurst exponent,the depreciation rate positively impacted the CA price,and increasing the initial CA reduced the optimal reduction and the CA price.Our findings can be used to develop optimal emission-reduction strategies for thermal power enterprises and carbon pricing in the carbon market.
文摘【目的】在“双碳”目标背景下,解决高风电渗透率系统建设带来的调峰安全性和经济性问题。【方法】采用电池储能系统削峰填谷的解决方案,提出了一种兼顾技术及经济性的锌溴液流电池(zinc-bromine flow battery,ZBB)储能的调峰优化控制方法。根据实际电池装置,对ZBB储能进行结构解析及数学模型构建。考虑调峰技术性效果,以调峰后的负荷曲线标准差最小为目标函数,提出一种考虑调峰效果的储能双向寻优控制策略。在此基础上,依据电网分时(time of use,TOU)电价政策,以技术性及经济性最优为目标函数,提出一种基于TOU电价机制的储能调峰经济模型,得出储能优化功率时序结果。最后,以东北某地区负荷及风电数据为例,对比验证所提策略的有效性。【结果】所提策略相较于原负荷,在日均负荷峰谷差、峰谷差率指标上分别降低了35.973%和34.205%,在调峰经济性优化方面提高了5.582%,且合并缓解了电网弃风消纳问题。【结论】所提策略在达到一定调峰效果的同时,在其全寿命周期内仍保持较好的调峰经济性。