针对雷达射频隐身波形设计中的复杂调制问题,本文提出脉间复合调频与脉内多相码调相的复合策略。在脉间采用非线性的调频特征调制Costas信号各恒定频率,并在脉内采用多相位编码方式调制信号的相位特征,进而得到IPNC-PC信号。采用脉间复...针对雷达射频隐身波形设计中的复杂调制问题,本文提出脉间复合调频与脉内多相码调相的复合策略。在脉间采用非线性的调频特征调制Costas信号各恒定频率,并在脉内采用多相位编码方式调制信号的相位特征,进而得到IPNC-PC信号。采用脉间复合调频增加了信号的时频复杂度,脉内多相码调相增加了信号的相位随机性。仿真结果表明:IPNC-PC信号具备近似“图钉型”的模糊图,自相关旁瓣电平达到-41dB、主瓣宽度变窄率最高达到39%、功率谱峰值低于-10 d B。IPNC-PC信号具有低截获性,射频隐身性能良好,在现代电子战中有良好的应用前景。展开更多
The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m s...The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.展开更多
文摘针对雷达射频隐身波形设计中的复杂调制问题,本文提出脉间复合调频与脉内多相码调相的复合策略。在脉间采用非线性的调频特征调制Costas信号各恒定频率,并在脉内采用多相位编码方式调制信号的相位特征,进而得到IPNC-PC信号。采用脉间复合调频增加了信号的时频复杂度,脉内多相码调相增加了信号的相位随机性。仿真结果表明:IPNC-PC信号具备近似“图钉型”的模糊图,自相关旁瓣电平达到-41dB、主瓣宽度变窄率最高达到39%、功率谱峰值低于-10 d B。IPNC-PC信号具有低截获性,射频隐身性能良好,在现代电子战中有良好的应用前景。
基金Supported by the National Natural Science Foundation of China(Youth Science Fund)(61001190)
文摘The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.