Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and ins...Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and instruction signal. Two-stage de-noising processing can reduce the impact of baseline drift and determine automatic peak detection threshold range for signal recognition by distinguishing different features of frame synchronization pulse and instruction pulse. Rising and falling edge relative protruding threshold is defined for peak detection in signal recognition, which can make full use of the degree of the signal peak change and detect peaks flexibly with rising and falling edge relative protruding threshold combination. A synchronous decoding method was designed to reduce position uncertainty of the frame synchronization pulse and eliminate the accumulative error of time base drift, which determines the first instruction pulse position according to position of the frame synchronization pulse and decodes subsequent instruction pulse by taking current instruction pulse as new bit synchronization pulse. Special tool software was developed to tune algorithm parameters, which has a decoding success rate of about 95% for the universal coded signals. For the special coded signals with check byte, decoding success rate using the automatic threshold adjustment algorithm is as high as 99%.展开更多
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic...VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.展开更多
The VisuShrink is one of the important image denoising methods. It however does not provide good quality of image due to removing too many coefficients especially using soft-thresholding technique. This paper proposes...The VisuShrink is one of the important image denoising methods. It however does not provide good quality of image due to removing too many coefficients especially using soft-thresholding technique. This paper proposes a new image denoising scheme using wavelet transformation. In this paper, we modify the coefficients using soft-thresholding method to enhance the visual quality of noisy image. The experimental results show that our proposed scheme has better performance than the VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e., visual quality of the image.展开更多
In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multipl...In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
In this paper, a robust DWPT based adaptive bock algorithm with modified threshold for denoising the sounds of musical instruments shehnai, dafli and flute is proposed. The signal is first segmented into multiple bloc...In this paper, a robust DWPT based adaptive bock algorithm with modified threshold for denoising the sounds of musical instruments shehnai, dafli and flute is proposed. The signal is first segmented into multiple blocks depending upon the minimum mean square criteria in each block, and then thresholding methods are used for each block. All the blocks obtained after denoising the individual block are concatenated to get the final denoised signal. The discrete wavelet packet transform provides more coefficients than the conventional discrete wavelet transform (DWT), representing additional subtle detail of the signal but decision of optimal decomposition level is very important. When the sound signal corrupted with additive white Gaussian noise is passed through this algorithm, the obtained peak signal to noise ratio (PSNR) depends upon the level of decomposition along with shape of the wavelet. Hence, the optimal wavelet and level of decomposition may be different for each signal. The obtained denoised signal with this algorithm is close to the original signal.展开更多
为了解决红外制导研究中舰船图像样本数量不足的问题,提出一种面向舰船图像的改进的生成对抗网络(generative adversarial network,GAN),能够生成高质量的红外图像。首先转换可见光图像颜色空间以更好地捕捉夜间低亮度下图像的轮廓信息...为了解决红外制导研究中舰船图像样本数量不足的问题,提出一种面向舰船图像的改进的生成对抗网络(generative adversarial network,GAN),能够生成高质量的红外图像。首先转换可见光图像颜色空间以更好地捕捉夜间低亮度下图像的轮廓信息,然后引入残差块生成网络降低低像素的可见光图像对生成的红外图像的影响并加深网络层数以更好地学习深层映射关系,最后引入更平滑的损失函数加快收敛速度,提高生成红外图像目标边缘清晰程度。在制作的无人机拍摄的红外可见光配对的数据集进行测试,改进后的方法平均生成图像峰值信噪比(peak signal to noiseratio,PSNR)提升20.3%,结构相似性度量(structural similarity,SSIM)提升30.4%。结果表明改进的网络可以生成质量更高的红外仿真图像,用于目标检测等任务有更好的效果。展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05020005-001)
文摘Wavelet forced de-noising algorithm is suitable for denoising of unsteady drilling fluid pulse signal, including baseline drift rectification and two-stage de-noising processing of frame synchronization signal and instruction signal. Two-stage de-noising processing can reduce the impact of baseline drift and determine automatic peak detection threshold range for signal recognition by distinguishing different features of frame synchronization pulse and instruction pulse. Rising and falling edge relative protruding threshold is defined for peak detection in signal recognition, which can make full use of the degree of the signal peak change and detect peaks flexibly with rising and falling edge relative protruding threshold combination. A synchronous decoding method was designed to reduce position uncertainty of the frame synchronization pulse and eliminate the accumulative error of time base drift, which determines the first instruction pulse position according to position of the frame synchronization pulse and decodes subsequent instruction pulse by taking current instruction pulse as new bit synchronization pulse. Special tool software was developed to tune algorithm parameters, which has a decoding success rate of about 95% for the universal coded signals. For the special coded signals with check byte, decoding success rate using the automatic threshold adjustment algorithm is as high as 99%.
文摘VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.
文摘The VisuShrink is one of the important image denoising methods. It however does not provide good quality of image due to removing too many coefficients especially using soft-thresholding technique. This paper proposes a new image denoising scheme using wavelet transformation. In this paper, we modify the coefficients using soft-thresholding method to enhance the visual quality of noisy image. The experimental results show that our proposed scheme has better performance than the VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e., visual quality of the image.
基金support by the National Natural Science Foundation of China (61401360)the Fundamental Research Funds for the Central Universities (3102017zy026)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (2016JM6017)the Scientific Research Program Funded by Shaanxi Provincial Education Department (16JK1702)
文摘In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.
文摘In this paper, a robust DWPT based adaptive bock algorithm with modified threshold for denoising the sounds of musical instruments shehnai, dafli and flute is proposed. The signal is first segmented into multiple blocks depending upon the minimum mean square criteria in each block, and then thresholding methods are used for each block. All the blocks obtained after denoising the individual block are concatenated to get the final denoised signal. The discrete wavelet packet transform provides more coefficients than the conventional discrete wavelet transform (DWT), representing additional subtle detail of the signal but decision of optimal decomposition level is very important. When the sound signal corrupted with additive white Gaussian noise is passed through this algorithm, the obtained peak signal to noise ratio (PSNR) depends upon the level of decomposition along with shape of the wavelet. Hence, the optimal wavelet and level of decomposition may be different for each signal. The obtained denoised signal with this algorithm is close to the original signal.
文摘为了解决红外制导研究中舰船图像样本数量不足的问题,提出一种面向舰船图像的改进的生成对抗网络(generative adversarial network,GAN),能够生成高质量的红外图像。首先转换可见光图像颜色空间以更好地捕捉夜间低亮度下图像的轮廓信息,然后引入残差块生成网络降低低像素的可见光图像对生成的红外图像的影响并加深网络层数以更好地学习深层映射关系,最后引入更平滑的损失函数加快收敛速度,提高生成红外图像目标边缘清晰程度。在制作的无人机拍摄的红外可见光配对的数据集进行测试,改进后的方法平均生成图像峰值信噪比(peak signal to noiseratio,PSNR)提升20.3%,结构相似性度量(structural similarity,SSIM)提升30.4%。结果表明改进的网络可以生成质量更高的红外仿真图像,用于目标检测等任务有更好的效果。