针对储能电池组在电网典型储能工况下荷电状态(state of charge,SOC)估算精度较低的问题,提出一种基于核主成分分析(kernel principal component analysis,KPCA)-鹈鹕优化(pelican optimization algorithm,POA)-双向门控循环单元(bidire...针对储能电池组在电网典型储能工况下荷电状态(state of charge,SOC)估算精度较低的问题,提出一种基于核主成分分析(kernel principal component analysis,KPCA)-鹈鹕优化(pelican optimization algorithm,POA)-双向门控循环单元(bidirectional gated recurrent unit,Bi GRU)的SOC估计模型。通过设计调峰/调频工况下电池组充放电实验,从数据中提取表征SOC变化的融合特征作为模型输入;分别构建不同工况下Bi GRU网络,并利用POA对其超参数进行优化,提高模型性能;进一步在混合工况下验证模型的有效性。结果表明,所建模型有着更好的SOC估计效果和更强的鲁棒性,能够提高复杂储能工况下储能电池组SOC估计精度。展开更多
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
电池储能系统被认为是解决可再生能源的不确定性和不平衡性导致的功率不足和频率波动的有效途径。基于此,文中提出了一种基于电池的荷电状态SOC(state of charge)的电池储能系统混合控制策略。首先,文中将电池的SOC、调频和调峰需求划...电池储能系统被认为是解决可再生能源的不确定性和不平衡性导致的功率不足和频率波动的有效途径。基于此,文中提出了一种基于电池的荷电状态SOC(state of charge)的电池储能系统混合控制策略。首先,文中将电池的SOC、调频和调峰需求划分为不同的区域,并对调频和调峰提出相应的控制策略,提出SOC自恢复控制策略。之后提出储能的混合控制策略,基于电池储能的SOC,将储能的调频与调峰功能与SOC自恢复策略相结合,实现储能对电力系统的优化。最后通过仿真分析验证该控制策略的合理性与应对可再生能源波动的能力。展开更多
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.
文摘电池储能系统被认为是解决可再生能源的不确定性和不平衡性导致的功率不足和频率波动的有效途径。基于此,文中提出了一种基于电池的荷电状态SOC(state of charge)的电池储能系统混合控制策略。首先,文中将电池的SOC、调频和调峰需求划分为不同的区域,并对调频和调峰提出相应的控制策略,提出SOC自恢复控制策略。之后提出储能的混合控制策略,基于电池储能的SOC,将储能的调频与调峰功能与SOC自恢复策略相结合,实现储能对电力系统的优化。最后通过仿真分析验证该控制策略的合理性与应对可再生能源波动的能力。