This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength...This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength is studied.Then the shear strength of the entire joint asperities is derived.The results showed that the PSS of the entire joint asperities is proportional to a key parameter hs,which is related to the geometric character of the joint surface and the joint material properties.The parameter hsis taken as the new roughness parameter,and it is reasonable to associate the PSS with the geometric characteristics of the joint surface.Based on the new roughness parameter and shear test results of 20 sets of joint specimens,a new PSS model for rock joints is proposed.The new model is validated with the artificial joints in this paper and real rock joints in published studies.Results showed that it is suitable for different types of rock joints except for gneiss joints.The new model has the form of the Mohr-Coulomb model,which can directly reflect the relationship between the 3 D roughness parameters and the peak dilation angle.展开更多
In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanica...In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanical property of joints,has been a focal point in the research field.There are limitations in the current peak shear strength(PSS)prediction models for jointed rock:(i)the models do not comprehensively consider various influencing factors,and a PSS prediction model covering seven factors has not been established,including the sampling interval of the joints,the surface roughness of the joints,the normal stress,the basic friction angle,the uniaxial tensile strength,the uniaxial compressive strength,and the joint size for coupled joints;(ii)the datasets used to train the models are relatively limited;and(iii)there is a controversy regarding whether compressive or tensile strength should be used as the strength term among the influencing factors.To overcome these limitations,we developed four machine learning models covering these seven influencing factors,three relying on Support Vector Regression(SVR)with different kernel functions(linear,polynomial,and Radial Basis Function(RBF))and one using deep learning(DL).Based on these seven influencing factors,we compiled a dataset comprising the outcomes of 493 published direct shear tests for the training and validation of these four models.We compared the prediction performance of these four machine learning models with Tang’s and Tatone’s models.The prediction errors of Tang’s and Tatone’s models are 21.8%and 17.7%,respectively,while SVR_linear is at 16.6%,SVR_poly is at 14.0%,and SVR_RBF is at 12.1%.DL outperforms the two existing models with only an 8.5%error.Additionally,we performed shear tests on granite joints to validate the predictive capability of the DL-based model.With the DL approach,the results suggest that uniaxial tensile strength is recommended as the material strength term in the PSS model for more reliable outcomes.展开更多
The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assemb...The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assembled bentonite-bentonite interfaces.This study determined the shear resistance(including the peak shear strength and secant modulus)of densely compacted Gaomiaozi(GMZ)bentonite and its assembled interface after confined water saturation.The effect of bentonite dry density and saturation time on the shear resistance of saturated healed interfaces was elucidated,and the interfacial self-healing capacity was assessed.The results indicate that the shear resistance of the saturated healed interfaces increased with the bentonite dry density but had a non-monotonic correlation with the saturation time.For a given dry density of the bentonite,the saturated healed interface exhibits a lower peak shear strength than the saturated intact bentonite but a higher peak shear strength than the saturated separated interface.The saturated healed and separated interfaces have comparable shear moduli(secant moduli),which are lower than that of the saturated intact bentonite.The saturated healed interfaces display smooth shear failure planes,while the saturated assembled interfaces and intact bentonite exhibit comparable frictional angles.This indicates that interfacial self-healing plays a pivotal role in enhancing interfacial peak shear strength by facilitating microstructural bonding at the assembled interface.Finally,it can be stated that densely compacted GMZ bentonite has a robust interfacial self-healing capacity in terms of shear resistance.These findings contribute to the design of the bentonite buffer and facilitate the evaluation of its safe operation at specified disposal ages.展开更多
The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual s...The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality.展开更多
The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number ...The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number on the anchoring behavior of bedded rock mass. The results show that, both peak strength and elasticity modulus increase gradually with the increase of bedding cohesion and bolt number. The axial stress–strain curve of bedded rock mass under the reinforcement of bolts presents the features of strain-softening and secondary strengthening. Finally, anchoring behavior of bedded rock mass with different bolt numbers was simulated by using FLAC3 D numerical program and the results were compared with the experimental results. This study can provide certain bases to the stability control and support design of bedded rock mass in roadway.展开更多
The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv...The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.展开更多
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract...Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
Based on the strength reduction method and strain-softening model,a method for progressive failure analysis of strain-softening slopes was presented in this paper.The mutation is more pronounced in strain-softening an...Based on the strength reduction method and strain-softening model,a method for progressive failure analysis of strain-softening slopes was presented in this paper.The mutation is more pronounced in strain-softening analysis,and the mutation of displacement at slope crest was taken as critical failure criterion.An engineering example was provided to demonstrate the validity of the present method.This method was applied to a cut slope in an industry site.The results are as follows:(1) The factor of safety and the critical slip surface obtained by the present method are between those by peak and residual strength.The analysis with peak strength would lead to non-conservative results,but that with residual strength tends to be overly conservative.(2) The thickness of the shear zone considering strain-softening behaviour is narrower than that with non-softening analysis.(3) The failure of slope is the process of the initiation,propagation and connection of potential failure surface.The strength parameters are mobilized to a non-uniform degree while progressive failure occurs in the slope.(4) The factor of safety increases with the increase of residual shear strain threshold and elastic modulus.The failure mode of slope changes from shallow slip to deep slip.Poisson's ratio and dilation angle have little effect on the results.展开更多
An elastoplastic constitutive model for overconsolidated clays is established in the framework of the critical state theory and bounding surface plasticity theory. The bounding surface is defined as the maximum yield ...An elastoplastic constitutive model for overconsolidated clays is established in the framework of the critical state theory and bounding surface plasticity theory. The bounding surface is defined as the maximum yield surface in the loading history. A yielding ratio, i.e., an internal variant, is defined as the size ratio of the current yield surface to the corresponding bounding surface. The yielding ratio instead of the overconsolidation ratio(OCR) is used to evaluate the strength and stress-strain behaviors of overconsolidated clays in the shearing process. The bounding stress ratio incorporating the effect of the yielding ratio is used to characterize the potential failure strength of the overconsolidated clays. The dilation stress ratio taking into account the effect of the yielding ratio is applied to describe the dilatancy behaviors of the overconsolidated clays. Comparisons between model predictions and test data show that the proposed model could well capture the strength and stress-strain behaviors of normally consolidated and overconsolidated clays.展开更多
In actual rock engineering,fissures play an important role in determining the mechanical parameters of rock mass,whereas it is very difficult to construct fissures in cylindrical specimens.Therefore,the pre-fissured r...In actual rock engineering,fissures play an important role in determining the mechanical parameters of rock mass,whereas it is very difficult to construct fissures in cylindrical specimens.Therefore,the pre-fissured rectangular rock specimens were constructed innovatively.Moreover,a series of triaxial compression experimental results on the failure mechanical behavior of rectangular solid sandstone specimens containing a single fissure were reported.The lateral strain in different directions was monitored and the experimental results show that elastic modulus and axial strain increase non-linearly with confining pressure,and the average Poisson’s ratio parallel to fissure(μ2)is larger than that vertical to fissure(μ3).The cohesion,Hoek-Brown parameters of peak strength show similar trends with that of crack damage threshold to the fissure angle(α),and the parameters of the peak strength are larger than those of crack damage threshold.However,the internal friction angles of the peak strength and crack damage threshold are almost equal.Based on the geometries and properties of cracks,ten typical crack types are identified.Cracks vertical to pre-existing fissures occur in specimens under uniaxial compression,whereas cracks parallel to pre-existing fissures occur under triaxial compression.Finally,X-ray micro-computed tomography(CT)observations are conducted to analyze the internal damage mechanism of sandstone specimens with respect to various fissure angles.Reconstructed 3-D CT images indicate obvious effects of confining pressure and fissure angle on the crack system of sandstone specimens.This research elucidates the fundamental nature of rock failure under triaxial compression.展开更多
The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interfac...The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interface were studied with two boundary conditions(constant normal load(CNL)and constant normal height(CNH)),at three normal stresses(100,200,and 300 k Pa),and at three temperatures(-2,-5,and-8℃).A detailed comparative analysis was performed to explore the principal factors affecting the shear/normal-shear displacement.The results showed that the shear behavior of the frozen sand–concrete interface under CNL was similar to that under CNH.The shear stress–shear displacement exhibited strain softening.The temperature and normal stress were the major influences on normal properties.The lower the temperature and the higher the normal stress,the greater was the elastic shear modulus.The peak shear stress and critical shear stress exhibited a dependence on normal stress.An exponential growth in the peak shear stress was observed as the temperature decreased.Critical shear stress was dependent on temperature.The value and percentage of peak ice-cementation in peak shear stress was affected by temperature and normal stress.展开更多
This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investig...This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the confining pressure and the type of geotextile. Modeling was performed on samples with five different diameters: 38, 100, 200, 500 and 600 mm. The elastic-plastic Mohr-Coulomb model was used to simulate sand behavior. Results showed that small-sized samples show higher values of peak strength and higher axial strain at failure in comparison with large-sized samples. The size effect on the behavior of samples became further apparent when the number of geotextile layers was increased or the confining pressure was decreased. In addition, the results indicated that the magnitude of the size effect on the mechanical behavior of reinforced sand decreases with an increase in the sample size.展开更多
To explain the effect of joint roughness on joint peak shear strength(JPSS)and investigate the effect of different contact states of joint surface on JPSS,we try to clarify the physical mechanism of the effect of join...To explain the effect of joint roughness on joint peak shear strength(JPSS)and investigate the effect of different contact states of joint surface on JPSS,we try to clarify the physical mechanism of the effect of joint cavity percentage(JCP)on JPSS from the perspective of the three-dimensional(3D)distribution characteristics of the actual contact joint surface,and propose a JPSS model considering the JCP.Shear tests for red sandstone joints with three different surface morphologies and three different JCPs were performed under constant normal load condition.Based on test fitting results,the reduction effect of the JCP on JPSS is investigated,and a JPSS model for cavity-containing joints is obtained.However,the above model only considers the influence of JCP by fitting test data,and does not reveal the physical mechanism of JCP affecting the JPSS.Based on the peak dilation angle model for consideration of the actual contact joint morphology,and the influence of JCP on the roughness of the actual contact joint surface,a theoretical model of the JPSS considering the JCP is proposed.The derivation process does not depend on the test fitting,but is entirely based on the joint mechanical law,and its physical significance is clear.It is proposed that the essence of the influence of the JCP on JPSS is that the JCP first affects the normal stress of the actual contact joints,further affects the roughness of actual contact joints,and then affects the shear strength.展开更多
基金supported by China Postdoctoral Science Foundation(No.2020M680007)Beijing Postdoctoral Research Foundation(No.2020-zz-087)+1 种基金National Natural Science Foundation of China(Nos.51478027 and 51174012)Fundamental Research Funds for Beijing Civil Engineering and Architecture(No.X20031)。
文摘This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength is studied.Then the shear strength of the entire joint asperities is derived.The results showed that the PSS of the entire joint asperities is proportional to a key parameter hs,which is related to the geometric character of the joint surface and the joint material properties.The parameter hsis taken as the new roughness parameter,and it is reasonable to associate the PSS with the geometric characteristics of the joint surface.Based on the new roughness parameter and shear test results of 20 sets of joint specimens,a new PSS model for rock joints is proposed.The new model is validated with the artificial joints in this paper and real rock joints in published studies.Results showed that it is suitable for different types of rock joints except for gneiss joints.The new model has the form of the Mohr-Coulomb model,which can directly reflect the relationship between the 3 D roughness parameters and the peak dilation angle.
基金supported by the National Key Research and Development Program of China(2022YFC3080100)the National Natural Science Foundation of China(Nos.52104090,52208328 and 12272353)+1 种基金the Open Fund of Anhui Province Key Laboratory of Building Structure and Underground Engineering,Anhui Jianzhu University(No.KLBSUE-2022-06)the Open Research Fund of Key Laboratory of Construction and Safety of Water Engineering of the Ministry of Water Resources,China Institute of Water Resources and Hydropower Research(Grant No.IWHR-ENGI-202302)。
文摘In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanical property of joints,has been a focal point in the research field.There are limitations in the current peak shear strength(PSS)prediction models for jointed rock:(i)the models do not comprehensively consider various influencing factors,and a PSS prediction model covering seven factors has not been established,including the sampling interval of the joints,the surface roughness of the joints,the normal stress,the basic friction angle,the uniaxial tensile strength,the uniaxial compressive strength,and the joint size for coupled joints;(ii)the datasets used to train the models are relatively limited;and(iii)there is a controversy regarding whether compressive or tensile strength should be used as the strength term among the influencing factors.To overcome these limitations,we developed four machine learning models covering these seven influencing factors,three relying on Support Vector Regression(SVR)with different kernel functions(linear,polynomial,and Radial Basis Function(RBF))and one using deep learning(DL).Based on these seven influencing factors,we compiled a dataset comprising the outcomes of 493 published direct shear tests for the training and validation of these four models.We compared the prediction performance of these four machine learning models with Tang’s and Tatone’s models.The prediction errors of Tang’s and Tatone’s models are 21.8%and 17.7%,respectively,while SVR_linear is at 16.6%,SVR_poly is at 14.0%,and SVR_RBF is at 12.1%.DL outperforms the two existing models with only an 8.5%error.Additionally,we performed shear tests on granite joints to validate the predictive capability of the DL-based model.With the DL approach,the results suggest that uniaxial tensile strength is recommended as the material strength term in the PSS model for more reliable outcomes.
基金supported by the National Natural Science Foundation of China (Grant Nos.42125701 and 41977232)China Postdoctoral Science Foundation (Grant No.2021M702234).
文摘The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assembled bentonite-bentonite interfaces.This study determined the shear resistance(including the peak shear strength and secant modulus)of densely compacted Gaomiaozi(GMZ)bentonite and its assembled interface after confined water saturation.The effect of bentonite dry density and saturation time on the shear resistance of saturated healed interfaces was elucidated,and the interfacial self-healing capacity was assessed.The results indicate that the shear resistance of the saturated healed interfaces increased with the bentonite dry density but had a non-monotonic correlation with the saturation time.For a given dry density of the bentonite,the saturated healed interface exhibits a lower peak shear strength than the saturated intact bentonite but a higher peak shear strength than the saturated separated interface.The saturated healed and separated interfaces have comparable shear moduli(secant moduli),which are lower than that of the saturated intact bentonite.The saturated healed interfaces display smooth shear failure planes,while the saturated assembled interfaces and intact bentonite exhibit comparable frictional angles.This indicates that interfacial self-healing plays a pivotal role in enhancing interfacial peak shear strength by facilitating microstructural bonding at the assembled interface.Finally,it can be stated that densely compacted GMZ bentonite has a robust interfacial self-healing capacity in terms of shear resistance.These findings contribute to the design of the bentonite buffer and facilitate the evaluation of its safe operation at specified disposal ages.
基金The financial supports from the National Natural Science Foundation of China (No.50674083)the Eleventh Five-Year Plan of National Scientific and Technological Support of China (No.2008BAB36 B07)the Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘The mechanical properties of jointed rock masses, such as strength, deformation and the failure mechanism, can be understood only by studying the sensitivity of jointed rock mass strength (both the peak and residual strengths) to the factors that affect it. An orthogonal design of uniaxial compression tests was simulated on eighteen groups of jointed rock specimens having different geometric and mechanical properties using RFPA2D (Rock Failure Process Analysis) code. The results show that the peak strength is controlled by the geometric parameters of the joints, but that the residual strength is controlled by the mechanical prop- erties of the joint interfaces. The failure mode of jointed rock specimens is mainly shear failure. Joint quantity, or density, is the most important index that affects jointed rock mass strength and engineering quality.
基金Financial provided by the National Key Research and Development Program of China (Grant No. 2017YFC0603001)the National Natural Science Foundation of China (Nos. 51734009 and 51704279)the Natural Science Foundation of Jiangsu Province (BK20170270)
文摘The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number on the anchoring behavior of bedded rock mass. The results show that, both peak strength and elasticity modulus increase gradually with the increase of bedding cohesion and bolt number. The axial stress–strain curve of bedded rock mass under the reinforcement of bolts presents the features of strain-softening and secondary strengthening. Finally, anchoring behavior of bedded rock mass with different bolt numbers was simulated by using FLAC3 D numerical program and the results were compared with the experimental results. This study can provide certain bases to the stability control and support design of bedded rock mass in roadway.
基金the National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China(Grant No.52022112)the Hunan Provincial Innovation Foundation for Postgraduate of China(Grant No.2020zzts152)are acknowledged.
文摘The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774082, 50804046 and 51109209)
文摘Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
基金Project supported by the National Natural Science Foundation of China (No. 10972238)the Scholarship Award for Excellent Doctoral Student Granted by Ministry of Educationthe Transportation Science and Technology Projects of Hunan Province (No. 201003),China
文摘Based on the strength reduction method and strain-softening model,a method for progressive failure analysis of strain-softening slopes was presented in this paper.The mutation is more pronounced in strain-softening analysis,and the mutation of displacement at slope crest was taken as critical failure criterion.An engineering example was provided to demonstrate the validity of the present method.This method was applied to a cut slope in an industry site.The results are as follows:(1) The factor of safety and the critical slip surface obtained by the present method are between those by peak and residual strength.The analysis with peak strength would lead to non-conservative results,but that with residual strength tends to be overly conservative.(2) The thickness of the shear zone considering strain-softening behaviour is narrower than that with non-softening analysis.(3) The failure of slope is the process of the initiation,propagation and connection of potential failure surface.The strength parameters are mobilized to a non-uniform degree while progressive failure occurs in the slope.(4) The factor of safety increases with the increase of residual shear strain threshold and elastic modulus.The failure mode of slope changes from shallow slip to deep slip.Poisson's ratio and dilation angle have little effect on the results.
基金supported by the National Natural Science Foundation of China(Grant No.51509024)the Fundamental Research Funds for the Central Universities(Grant No.106112015CDJXY200008)the Project funded by China Postdoctoral Science Foundation(Grant No.2016M590864)
文摘An elastoplastic constitutive model for overconsolidated clays is established in the framework of the critical state theory and bounding surface plasticity theory. The bounding surface is defined as the maximum yield surface in the loading history. A yielding ratio, i.e., an internal variant, is defined as the size ratio of the current yield surface to the corresponding bounding surface. The yielding ratio instead of the overconsolidation ratio(OCR) is used to evaluate the strength and stress-strain behaviors of overconsolidated clays in the shearing process. The bounding stress ratio incorporating the effect of the yielding ratio is used to characterize the potential failure strength of the overconsolidated clays. The dilation stress ratio taking into account the effect of the yielding ratio is applied to describe the dilatancy behaviors of the overconsolidated clays. Comparisons between model predictions and test data show that the proposed model could well capture the strength and stress-strain behaviors of normally consolidated and overconsolidated clays.
基金supported by the Fundamental Research Funds for the Central Universities(2020ZDPYMS34).
文摘In actual rock engineering,fissures play an important role in determining the mechanical parameters of rock mass,whereas it is very difficult to construct fissures in cylindrical specimens.Therefore,the pre-fissured rectangular rock specimens were constructed innovatively.Moreover,a series of triaxial compression experimental results on the failure mechanical behavior of rectangular solid sandstone specimens containing a single fissure were reported.The lateral strain in different directions was monitored and the experimental results show that elastic modulus and axial strain increase non-linearly with confining pressure,and the average Poisson’s ratio parallel to fissure(μ2)is larger than that vertical to fissure(μ3).The cohesion,Hoek-Brown parameters of peak strength show similar trends with that of crack damage threshold to the fissure angle(α),and the parameters of the peak strength are larger than those of crack damage threshold.However,the internal friction angles of the peak strength and crack damage threshold are almost equal.Based on the geometries and properties of cracks,ten typical crack types are identified.Cracks vertical to pre-existing fissures occur in specimens under uniaxial compression,whereas cracks parallel to pre-existing fissures occur under triaxial compression.Finally,X-ray micro-computed tomography(CT)observations are conducted to analyze the internal damage mechanism of sandstone specimens with respect to various fissure angles.Reconstructed 3-D CT images indicate obvious effects of confining pressure and fissure angle on the crack system of sandstone specimens.This research elucidates the fundamental nature of rock failure under triaxial compression.
基金the National Natural Science Foundation of China(No.41731281)the Key Foundation of Guangdong Province(No.2020B1515120083),China。
文摘The shear strength properties of the frozen sand–structure interface are critical for evaluating the serviceability of pile foundations in frozen ground.The shear characteristics of the frozen sand–concrete interface were studied with two boundary conditions(constant normal load(CNL)and constant normal height(CNH)),at three normal stresses(100,200,and 300 k Pa),and at three temperatures(-2,-5,and-8℃).A detailed comparative analysis was performed to explore the principal factors affecting the shear/normal-shear displacement.The results showed that the shear behavior of the frozen sand–concrete interface under CNL was similar to that under CNH.The shear stress–shear displacement exhibited strain softening.The temperature and normal stress were the major influences on normal properties.The lower the temperature and the higher the normal stress,the greater was the elastic shear modulus.The peak shear stress and critical shear stress exhibited a dependence on normal stress.An exponential growth in the peak shear stress was observed as the temperature decreased.Critical shear stress was dependent on temperature.The value and percentage of peak ice-cementation in peak shear stress was affected by temperature and normal stress.
文摘This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the confining pressure and the type of geotextile. Modeling was performed on samples with five different diameters: 38, 100, 200, 500 and 600 mm. The elastic-plastic Mohr-Coulomb model was used to simulate sand behavior. Results showed that small-sized samples show higher values of peak strength and higher axial strain at failure in comparison with large-sized samples. The size effect on the behavior of samples became further apparent when the number of geotextile layers was increased or the confining pressure was decreased. In addition, the results indicated that the magnitude of the size effect on the mechanical behavior of reinforced sand decreases with an increase in the sample size.
基金supported by the National Natural Science Foundation of China (Nos.52208328 and 52104090)Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering (No.sklhse-2021-C-06).
文摘To explain the effect of joint roughness on joint peak shear strength(JPSS)and investigate the effect of different contact states of joint surface on JPSS,we try to clarify the physical mechanism of the effect of joint cavity percentage(JCP)on JPSS from the perspective of the three-dimensional(3D)distribution characteristics of the actual contact joint surface,and propose a JPSS model considering the JCP.Shear tests for red sandstone joints with three different surface morphologies and three different JCPs were performed under constant normal load condition.Based on test fitting results,the reduction effect of the JCP on JPSS is investigated,and a JPSS model for cavity-containing joints is obtained.However,the above model only considers the influence of JCP by fitting test data,and does not reveal the physical mechanism of JCP affecting the JPSS.Based on the peak dilation angle model for consideration of the actual contact joint morphology,and the influence of JCP on the roughness of the actual contact joint surface,a theoretical model of the JPSS considering the JCP is proposed.The derivation process does not depend on the test fitting,but is entirely based on the joint mechanical law,and its physical significance is clear.It is proposed that the essence of the influence of the JCP on JPSS is that the JCP first affects the normal stress of the actual contact joints,further affects the roughness of actual contact joints,and then affects the shear strength.