With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this prob...With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.展开更多
Building simulation is a powerful way to evaluate the performance of a building.The quality of simulation results however strongly depends on the accuracy of simulation input data.Especially for weather data files and...Building simulation is a powerful way to evaluate the performance of a building.The quality of simulation results however strongly depends on the accuracy of simulation input data.Especially for weather data files and occupant behaviour it is difficult to obtain accurate data.This paper evaluates the variability of building simulation results with regards to different weather data sets as well as different heating and cooling set points for a residential building in Victoria,Australia.Thermal comfort accord-ing to ASHRAE Standard 55,final energy consumption and peak cooling and heating loads are assessed.Simulations have been performed with Energy-Plus,and weather data for a multi-year approach have been generated with the software Meteonorm.The results show that different weather files for the same location as well as different conditioning set points can influence the results by approximately a factor of 2.展开更多
In this paper full-energy peak (photopeak) efficiency and photopeak attenuation coefficient of 3'' × 3'' NaI(Tl) well-type scintillation detector were calculated using gamma-rayisotropic radiating...In this paper full-energy peak (photopeak) efficiency and photopeak attenuation coefficient of 3'' × 3'' NaI(Tl) well-type scintillation detector were calculated using gamma-rayisotropic radiating point sources (with photon energy: 0.245, 0.344, 0.662, 0.779, 0.964, 1.1732, 1.333 and 1.408 MeV) placed outside the detector well. These energies were obtained from <sup>152</sup>Eu, <sup>137</sup>Cs and <sup>60</sup>Co. The relations between the full energy peak efficiency and photopeak attenuation coefficients, were plotted vs. photon energy at different sources to detector distance, and it found that the full energy peak efficiency decreased by increasing the distance between the source and the detector.展开更多
In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me n...In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me new methods are also put forward to improve optimization performance of genet ic algorithm, such as point-cast method and neighborhood search strategy around peak-points. The methods are used to deal with genetic operation besides of cr ossover and mutation, in order to obtain a global optimum solution and avoid GA ’s premature convergence. By means of many control rules and a peak-depot, the new algorithm carries out optimum search surrounding several peak-points. Alon g with evolution of individuals of population, the fitness of peak-points of pe ak-depot increases continually, and a global optimum solution can be obtained. The new algorithm searches around several peak-points, which increases the prob ability to obtain the global optimum solution to the best. By using some example s to test the modified genetic algorithm, the results indicate what we have done makes the modified genetic algorithm effectively to solve both of linear optimi zation problems and nonlinear optimization problems with restrictive functions.展开更多
实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足...实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足。针对这一问题,提出一种基于布谷鸟搜索算法(cuckoo search algorithm, CS)和电导增量法(conductivity increment method, CI)结合的光伏MPPT算法,在算法前期利用布谷鸟搜索算法将大步长和小步长交替使用使得全局搜索能力增强,找到全局最大功率点所处区域附近;在后期,采用步长小、控制精度高的CI进行局部寻优,快速准确地锁定到最大功率点。在MATLAB/Simulink中搭建仿真模型,并与原始布谷鸟搜索算法和粒子群优化(particle swam optimization, PSO)算法进行比较。仿真结果表明,将CS与CI结合的算法使得收敛速度更快,精度更高,稳定状态时功率曲线的波动更小。展开更多
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ...Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.展开更多
基金supported by the Science and Technology Project from the State Grid Shanghai Municipal Electric Power Company of China (52094019006U)the Shanghai Rising-Star Program (18QB1400200)。
文摘With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.
文摘Building simulation is a powerful way to evaluate the performance of a building.The quality of simulation results however strongly depends on the accuracy of simulation input data.Especially for weather data files and occupant behaviour it is difficult to obtain accurate data.This paper evaluates the variability of building simulation results with regards to different weather data sets as well as different heating and cooling set points for a residential building in Victoria,Australia.Thermal comfort accord-ing to ASHRAE Standard 55,final energy consumption and peak cooling and heating loads are assessed.Simulations have been performed with Energy-Plus,and weather data for a multi-year approach have been generated with the software Meteonorm.The results show that different weather files for the same location as well as different conditioning set points can influence the results by approximately a factor of 2.
文摘In this paper full-energy peak (photopeak) efficiency and photopeak attenuation coefficient of 3'' × 3'' NaI(Tl) well-type scintillation detector were calculated using gamma-rayisotropic radiating point sources (with photon energy: 0.245, 0.344, 0.662, 0.779, 0.964, 1.1732, 1.333 and 1.408 MeV) placed outside the detector well. These energies were obtained from <sup>152</sup>Eu, <sup>137</sup>Cs and <sup>60</sup>Co. The relations between the full energy peak efficiency and photopeak attenuation coefficients, were plotted vs. photon energy at different sources to detector distance, and it found that the full energy peak efficiency decreased by increasing the distance between the source and the detector.
文摘In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me new methods are also put forward to improve optimization performance of genet ic algorithm, such as point-cast method and neighborhood search strategy around peak-points. The methods are used to deal with genetic operation besides of cr ossover and mutation, in order to obtain a global optimum solution and avoid GA ’s premature convergence. By means of many control rules and a peak-depot, the new algorithm carries out optimum search surrounding several peak-points. Alon g with evolution of individuals of population, the fitness of peak-points of pe ak-depot increases continually, and a global optimum solution can be obtained. The new algorithm searches around several peak-points, which increases the prob ability to obtain the global optimum solution to the best. By using some example s to test the modified genetic algorithm, the results indicate what we have done makes the modified genetic algorithm effectively to solve both of linear optimi zation problems and nonlinear optimization problems with restrictive functions.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.