This paper proposes a companding scheme, where small signals are enlarged and large signals are reduced, to reduce the Peak-to-Average Power Ratio(PAPR). Computer simulation results show that the proposed technique ha...This paper proposes a companding scheme, where small signals are enlarged and large signals are reduced, to reduce the Peak-to-Average Power Ratio(PAPR). Computer simulation results show that the proposed technique has two advantages at least when compared with the conventional methods such as partial transmit sequence, selective mapping and the previous companding. First, it gets better PAPR performances with a lower complexity. Second, the scheme achieves greater performances gain with hardly any damnification of OFDM signals in some degree.展开更多
The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobi...The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobility scenarios and strict energy constraints.Orthogonal time frequency space(OTFS)modulation is a two-dimensional modulation technique that has the potential to overcome the challenges in high Doppler environments.In addition,OTFS can have lower peak-to-average power ratio(PAPR)compared to orthogonal frequency division multiplexing,which is especially important for the application of IoT-R.Therefore,OTFS modulation for IoT-R is investigated in this paper.In order to decrease PAPR of OTFS and promote the application of OTFS modulation in IoT-R,the peak windowing technique is used in this paper.This technique can reduce the PAPR of OTFS by reducing the peak power and does not require multiple iterations.The impacts of different window functions,window sizes and clipping levels on PAPR and bit error rate of OTFS are simulated and discussed.The simulation results show that the peak windowing technique can efficiently reduce the PAPR of OTFS for IoT-R.展开更多
A new scheme termed as Complement Block Coding (CBC) technique is proposed to reduce the Peak-to-Average Power Ratio (PAPR) of OFDM signals. Utilizing the complement bits which are added to the original information bi...A new scheme termed as Complement Block Coding (CBC) technique is proposed to reduce the Peak-to-Average Power Ratio (PAPR) of OFDM signals. Utilizing the complement bits which are added to the original information bits,this method can effectively reduce the PAPR of OFDM systems with random frame size N and the coding rate R ≤ (N - k)/N, where kis a positive integer and k ≤ N/2. The performance results obtained with CBC are given and compared with that of some well known schemes, such as Simple Block Coding (SBC), Modified Simple Block Coding (MSBC) and Simple Odd Parity Code (SOPC) for the same purpose. The results show that, at the same coding rate 3/4, the CBC can achieve almost the same performance as SBC, MSBC, but with lower complexity, and that the same performance can be obtained with higher coding rate by using CBC. At the same coding rate (N - 1)/N, the PAPR reduction of CBC is almost the twice as that of SOPC when N ≥ 16. Further more, the PAPR reductions with coding rate (N - 1)/N are almost the same as that with coding rate less than (N - 1)/N,so the proposed scheme CBC is more suitable for the large frame size with high coding rate and can provide error detection.展开更多
A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM...A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.展开更多
The complex-valued modulating vectors for the subcarriers consist of two kinds of components: One is the information-bearing components superposed with pseudo-randomized phases and the other is the suppression compone...The complex-valued modulating vectors for the subcarriers consist of two kinds of components: One is the information-bearing components superposed with pseudo-randomized phases and the other is the suppression components with specified scrambling phases. The pseudo randomized phases are generated according to the predefined polynomial and mapping function whereas the scrambling phases are from a gradient algorithm. The simulation results verify the rationality and validity of the phase scrambling.展开更多
A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power...A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power ratio(PAPR) of filter bank multicarrier-offset quadrature amplitude modulation(FBMC-OQAM) signals.The V subblocks in partial transmit sequence(PTS) are regrouped into U combinations according to the correlation coefficient p,and overlapping subblocks are allowed between adjacent groups.The search starts from the first group and sets the phase factors of the subsequent groups to 1.When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors.Starting from the second data block,the data overlapped with it should be taken into account when determining its optimal phase factor vector.Theoretical analysis and simulation results indicate that compared with the OPTS algorithm,the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance.Meanwhile,compared with the even-odd iterative double-layers OPTS(ID-OPTS) algorithm,it can further reduce the complexity and obtain a better PAPR suppression effect.展开更多
High peak-to-average-power ratio(PAPR) and spectral leakage are two main drawbacks of multicarrier systems, such as in orthogonal frequency division multiplexing(OFDM), in future 5G wireless communications. For genera...High peak-to-average-power ratio(PAPR) and spectral leakage are two main drawbacks of multicarrier systems, such as in orthogonal frequency division multiplexing(OFDM), in future 5G wireless communications. For generating optimized wave forms for 5G communications, this paper proposes an iterative scheme combining time-domain N-continuous OFDM(TD-NC-OFDM) and serial peak cancellation(SPC). Based on the theory of projection onto convex sets(POCS), the effectiveness of the proposed scheme is proved, and the optimized time-frequency domain multicarrier waveforms are analyzed in terms of a balanced tradeoff between out-of-band spectral leakage and PAPR. Both theoretical analysis and simulation results show that the proposed scheme can jointly optimize both the PAPR and out-ofband radiation, with moderate computational complexity.展开更多
文摘This paper proposes a companding scheme, where small signals are enlarged and large signals are reduced, to reduce the Peak-to-Average Power Ratio(PAPR). Computer simulation results show that the proposed technique has two advantages at least when compared with the conventional methods such as partial transmit sequence, selective mapping and the previous companding. First, it gets better PAPR performances with a lower complexity. Second, the scheme achieves greater performances gain with hardly any damnification of OFDM signals in some degree.
基金supported by the National Key R&D Program of China under Grant 2022YFF0608103the National Natural Science Foundation of China under Grant 62001519 and 62271037。
文摘The internet of things(IoT)has been widely considered to be integrated with high-speed railways to improve safety and service.It is important to achieve reliable communication in IoT for railways(IoT-R)under high mobility scenarios and strict energy constraints.Orthogonal time frequency space(OTFS)modulation is a two-dimensional modulation technique that has the potential to overcome the challenges in high Doppler environments.In addition,OTFS can have lower peak-to-average power ratio(PAPR)compared to orthogonal frequency division multiplexing,which is especially important for the application of IoT-R.Therefore,OTFS modulation for IoT-R is investigated in this paper.In order to decrease PAPR of OTFS and promote the application of OTFS modulation in IoT-R,the peak windowing technique is used in this paper.This technique can reduce the PAPR of OTFS by reducing the peak power and does not require multiple iterations.The impacts of different window functions,window sizes and clipping levels on PAPR and bit error rate of OTFS are simulated and discussed.The simulation results show that the peak windowing technique can efficiently reduce the PAPR of OTFS for IoT-R.
基金Supported in part by the National High Technology Research Development Program of China (863 Program) (No.2001AA123014)
文摘A new scheme termed as Complement Block Coding (CBC) technique is proposed to reduce the Peak-to-Average Power Ratio (PAPR) of OFDM signals. Utilizing the complement bits which are added to the original information bits,this method can effectively reduce the PAPR of OFDM systems with random frame size N and the coding rate R ≤ (N - k)/N, where kis a positive integer and k ≤ N/2. The performance results obtained with CBC are given and compared with that of some well known schemes, such as Simple Block Coding (SBC), Modified Simple Block Coding (MSBC) and Simple Odd Parity Code (SOPC) for the same purpose. The results show that, at the same coding rate 3/4, the CBC can achieve almost the same performance as SBC, MSBC, but with lower complexity, and that the same performance can be obtained with higher coding rate by using CBC. At the same coding rate (N - 1)/N, the PAPR reduction of CBC is almost the twice as that of SOPC when N ≥ 16. Further more, the PAPR reductions with coding rate (N - 1)/N are almost the same as that with coding rate less than (N - 1)/N,so the proposed scheme CBC is more suitable for the large frame size with high coding rate and can provide error detection.
文摘A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.
文摘The complex-valued modulating vectors for the subcarriers consist of two kinds of components: One is the information-bearing components superposed with pseudo-randomized phases and the other is the suppression components with specified scrambling phases. The pseudo randomized phases are generated according to the predefined polynomial and mapping function whereas the scrambling phases are from a gradient algorithm. The simulation results verify the rationality and validity of the phase scrambling.
基金Supported by the National Natural Science Foundation of China(No.61601296,61701295,61801286)the Major Scientific and Technological Innovation Projects in Chengdu(No.2019-YF08-00082-GX)the Talent Program of Shanghai University of Engineering Science(No.2018RC43)。
文摘A correlation overlapping partial transmit sequence(C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence(OPTS) algorithm in suppressing the peak to average power ratio(PAPR) of filter bank multicarrier-offset quadrature amplitude modulation(FBMC-OQAM) signals.The V subblocks in partial transmit sequence(PTS) are regrouped into U combinations according to the correlation coefficient p,and overlapping subblocks are allowed between adjacent groups.The search starts from the first group and sets the phase factors of the subsequent groups to 1.When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors.Starting from the second data block,the data overlapped with it should be taken into account when determining its optimal phase factor vector.Theoretical analysis and simulation results indicate that compared with the OPTS algorithm,the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance.Meanwhile,compared with the even-odd iterative double-layers OPTS(ID-OPTS) algorithm,it can further reduce the complexity and obtain a better PAPR suppression effect.
基金supported in part by the National Science Foundation of China under Grant number 61471090the National HighTech R&D Program of China under Grant number 2014AA01A707+1 种基金the Fundamental Research Funds for the Central Universities(No.ZYGX2013J112)the Foundation Project of National Key Laboratory of Science and Technology on Communications under Grant 9140C020108140C02005
文摘High peak-to-average-power ratio(PAPR) and spectral leakage are two main drawbacks of multicarrier systems, such as in orthogonal frequency division multiplexing(OFDM), in future 5G wireless communications. For generating optimized wave forms for 5G communications, this paper proposes an iterative scheme combining time-domain N-continuous OFDM(TD-NC-OFDM) and serial peak cancellation(SPC). Based on the theory of projection onto convex sets(POCS), the effectiveness of the proposed scheme is proved, and the optimized time-frequency domain multicarrier waveforms are analyzed in terms of a balanced tradeoff between out-of-band spectral leakage and PAPR. Both theoretical analysis and simulation results show that the proposed scheme can jointly optimize both the PAPR and out-ofband radiation, with moderate computational complexity.