Floods often cause significant crop loss in the United States. Timely and objective information on flood-related crop loss, such as flooded acreage and degree of crop damage, is very important for crop monitoring and ...Floods often cause significant crop loss in the United States. Timely and objective information on flood-related crop loss, such as flooded acreage and degree of crop damage, is very important for crop monitoring and risk management in ag- ricultural and disaster-related decision-making at many concerned agencies. Currently concerned agencies mostly rely on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. The results from such methods suffer from inaccuracy, subjectiveness, untimeliness, and lack of reproducibility. Recent studies have demonstrated that Earth observation (EO) data could be used in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. However, there is no operational decision support system, which employs such EO-based data and algorithms for operational flood-related crop decision-making. This paper describes the development of an EO-based flood crop loss assessment cyber-service system, RF-CLASS, for supporting flood-related crop statistics and insurance decision-making. Based on the service-orientated architecture, RF-CLASS has been implemented with open interoperability specifications to facilitate the interoperability with EO data systems, particularly the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS), for automatically fetching the input data from the data systems. Validated EO algorithms have been implemented as web services in the system to operationally produce a set of flood-related products from EO data, such as flood frequency, flooded acreage, and degree of crop damage, for supporting decision-making in flood statistics and flood crop insurance policy. The system leverages recent advances in the remote sensing-based flood monitoring and assessment, the near-real-time availability of EO data, the service-oriented architecture, geospatial interoperability standards, and the standard-based geospatial web service technology. The prototypical system has automatically generated the flood crop loss products and demonstrated the feasibility of using such products to improve the agricultural decision-making. Evaluation of system by the end-user agencies indicates that significant improvement on flood-related crop decision-making has been achieved with the system.展开更多
Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed an...Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.展开更多
This study constructs downscaling statistical model in analyzing the hydrological modeling in the study area which faces the risk of flood occurrence as the impact of climate change. The combination of chemometric met...This study constructs downscaling statistical model in analyzing the hydrological modeling in the study area which faces the risk of flood occurrence as the impact of climate change. The combination of chemometric method and time series analysis in this study show that even during the monsoon season, rainfall and stream flow are not the major contribution towards the changing of water level in the study area. Based on Correlation Test, it shows that suspended solid and water level show high correlation with p-value < 0.05. Factor Analysis being carried out to determine the major contribution to the changes of Water Level and the result show that Suspended Solid shows a strong factor pattern with value 0.829. Based on Control Chat Builder for time series analysis, the Upper Control Limit for water level and suspended solid are 7.529 m and 1947.049 tons/day and the Lower Control Limit are 6.678 m and 178.135 tons/day. This shows that human development in the area gives high impact towards climate change and risk of flood in the study area which commonly faces flood during monsoon season.展开更多
When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a ...When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.展开更多
基金supported by grants from the National Aeronautics and Space Administration Applied Science Program,USA (NNX12AQ31G,NNX14AP91G,PI:Dr.Liping Di)
文摘Floods often cause significant crop loss in the United States. Timely and objective information on flood-related crop loss, such as flooded acreage and degree of crop damage, is very important for crop monitoring and risk management in ag- ricultural and disaster-related decision-making at many concerned agencies. Currently concerned agencies mostly rely on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. The results from such methods suffer from inaccuracy, subjectiveness, untimeliness, and lack of reproducibility. Recent studies have demonstrated that Earth observation (EO) data could be used in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. However, there is no operational decision support system, which employs such EO-based data and algorithms for operational flood-related crop decision-making. This paper describes the development of an EO-based flood crop loss assessment cyber-service system, RF-CLASS, for supporting flood-related crop statistics and insurance decision-making. Based on the service-orientated architecture, RF-CLASS has been implemented with open interoperability specifications to facilitate the interoperability with EO data systems, particularly the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS), for automatically fetching the input data from the data systems. Validated EO algorithms have been implemented as web services in the system to operationally produce a set of flood-related products from EO data, such as flood frequency, flooded acreage, and degree of crop damage, for supporting decision-making in flood statistics and flood crop insurance policy. The system leverages recent advances in the remote sensing-based flood monitoring and assessment, the near-real-time availability of EO data, the service-oriented architecture, geospatial interoperability standards, and the standard-based geospatial web service technology. The prototypical system has automatically generated the flood crop loss products and demonstrated the feasibility of using such products to improve the agricultural decision-making. Evaluation of system by the end-user agencies indicates that significant improvement on flood-related crop decision-making has been achieved with the system.
基金Major Unified Construction Project of Petro China(2019-40210-000020-02)。
文摘Since the oil production of single well in water flooding reservoir varies greatly and is hard to predict, an oil production prediction method of single well based on temporal convolutional network(TCN) is proposed and verified. This method is started from data processing, the correspondence between water injectors and oil producers is determined according to the influence radius of the water injectors, the influence degree of a water injector on an oil producer in the month concerned is added as a model feature, and a Random Forest(RF) model is built to fill the dynamic data of water flooding. The single well history is divided into 4 stages according to its water cut, that is, low water cut, middle water cut, high water cut and extra-high water cut stages. In each stage, a TCN based prediction model is established, hyperparameters of the model are optimized by the Sparrow Search Algorithm(SSA). Finally, the models of the 4 stages are integrated into one whole-life model of the well for production prediction. The application of this method in Daqing Oilfield, NE China shows that:(1) Compared with conventional data processing methods, the data obtained by this processing method are more close to the actual production, and the data set obtained is more authentic and complete.(2) The TCN model has higher prediction accuracy than other 11 models such as Long Short Term Memory(LSTM).(3) Compared with the conventional full-life-cycle models, the model of integrated stages can significantly reduce the error of production prediction.
文摘This study constructs downscaling statistical model in analyzing the hydrological modeling in the study area which faces the risk of flood occurrence as the impact of climate change. The combination of chemometric method and time series analysis in this study show that even during the monsoon season, rainfall and stream flow are not the major contribution towards the changing of water level in the study area. Based on Correlation Test, it shows that suspended solid and water level show high correlation with p-value < 0.05. Factor Analysis being carried out to determine the major contribution to the changes of Water Level and the result show that Suspended Solid shows a strong factor pattern with value 0.829. Based on Control Chat Builder for time series analysis, the Upper Control Limit for water level and suspended solid are 7.529 m and 1947.049 tons/day and the Lower Control Limit are 6.678 m and 178.135 tons/day. This shows that human development in the area gives high impact towards climate change and risk of flood in the study area which commonly faces flood during monsoon season.
文摘When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.