Peanut allergy is considered to be a major health issue with global effects.To date,no effective curative approach has been applied for the therapy of the anaphylaxis resulting from the peanut allergens.The accurate a...Peanut allergy is considered to be a major health issue with global effects.To date,no effective curative approach has been applied for the therapy of the anaphylaxis resulting from the peanut allergens.The accurate and effective detection methods for the surveillance of allergens in food are still the primary strategies to avoid allergic diseases.In this study,nanobodies(Nbs)derived from the Heavy-Chain only Antibodies(HCAbs)were selected against the general peanut protein extract through the unbiased strategy to facilitate the development of the sandwich ELISA for the detection and surveillance of peanut allergen contamination.The target antigen of the selected Nb was identified as peanut allergen Ara h 3,and a cross-reaction was observed with the member of Gly 1 from the Ara h 3 family.The applicability of the self-paired Nb P43 on the establishment of the immuno-assay was verified.A sandwich ELISA against peanut allergen was developed,which reached a linear range of 0.2-10.6μg/mL,and a limit of detection of 53.13 ng/mL.展开更多
Despite being known as resistant proteins, peanut allergens (Ara h 1 and Ara h 2) can be digested and cause allergic reactions. Making the allergens more resistant to digestion may aid in non-absorption and excretion ...Despite being known as resistant proteins, peanut allergens (Ara h 1 and Ara h 2) can be digested and cause allergic reactions. Making the allergens more resistant to digestion may aid in non-absorption and excretion of the allergens. Our objectives were to make Ara h 1 and Ara h 2 more resistant to digestion and test them in a model system using trypsin as the digestive enzyme. The resistant allergens were prepared by covalently attaching p-aminobenzamidine (pABA), a protease inhibitor, to peanut allergens in an extract or on a PVDF membrane using glutaraldehyde, and were then tested for resistance to trypsin digestion. SDS-PAGE and Western blot were performed to determine the allergenic capacity of the modified allergens. A control was prepared using glycine instead. Results showed that Ara h 2, when covalently attached with pABA, was more resistant to trypin digestion than the native allergen. Similarly, Ara h 1, prepared on a PVDF membrane and treated with pABA, displayed a resistance to trypsin digestion. Treatment of the allergens with glycine (a control) instead of pABA showed that the modified allergens were as digestible as native allergens. Blot assays showed that the pABA-treated allergens exhibited a lower allergenic capacity than native allergens. It was concluded that pABA, when attached to peanut allergen Ara h 1 or Ara h 2, inhibited digestion of the allergen by trypsin and reduced their allergenic capacity as well.展开更多
Peanut allergy is a type of serious food allergy worldwide.In this study,peanuts were treated with two different cooking methods.The effect of cooking on digestion stability was evaluated by simulated gastrointestinal...Peanut allergy is a type of serious food allergy worldwide.In this study,peanuts were treated with two different cooking methods.The effect of cooking on digestion stability was evaluated by simulated gastrointestinal digestions.The effects of cooking on the allergenicity were assessed by immunoblotting,passive cutaneous anaphylaxis (PCA) mice model and rat basophilic leukemia (RBL)-2H3 cell model.Results showed that raw peanuts were more stable to digestion than boiled and fried peanuts.SDS-PAGE showed that the quantities of allergens Ara h 1 (64 kDa),Ara h 2 (20 kDa),and Ara h 3 (38 kDa) in the boiled and fried peanuts were all reduced.Meanwhile,immunoblotting revealed the IgE binding capacities of boiled and fried peanuts were decreased significantly,especially the fried peanuts.In the PCA mice model,the vascular permeability of allergic mice,as well as the release of histamine,were both alleviated in mice gavaged with boiled and fried peanuts compared with raw peanuts.Lastly,the release of β-hexosaminidase of RBL-2H3 cells treated with boiled and fried peanuts was significantly decreased compared with the raw peanuts.In addition,the analyses of circular dichroism (CD) spectra showed that the α-helical content of peanut proteins was decreased after boiling and frying,indicating the structure stability of peanut allergens decreased.The analyses of ultraviolet (UV) spectra showed that aromatic amino acid residues were exposed,causing the change of the tertiary structure of peanut allergens after boiling and frying.In conclusion,the allergenicity of peanuts was significantly reduced after boiling and frying,especially frying.展开更多
Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut an...Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut and Ses i 1 gene of sesame.After the optimization of reaction conditions,a real-time fluorescent PCR method was established for simultaneous detection of allergenic ingredients of peanut and sesame in food.Genomic DNA samples of peanut,sesame,rice,wheat,barley,soybean,celery,maize,potato,tomato,walnut,groundnut in shell,cashew nut,sunflower seed,almond,apple,pear and strawberry,pork,beef,mutton and fish were used as templates for PCR amplification with deionized water as negative control template.Results indicated that the established real-time fluorescent PCR method could specifically identify allergenic ingredients of peanut and sesame simultaneously.Sensitivity test showed that the minimum detection limit of this method was 0.01%.Therefore,the established real-time fluorescent PCR method is a specific,sensitive and effective assay for simultaneously detecting allergenic ingredients of peanut and sesame in food.展开更多
Mature and immature roasted peanuts are reportedly different in the level of Maillard reaction adducts (MRA) and IgE binding (i.e., allergenic capacity). Heating and sugar-protein interaction are the cause for the dif...Mature and immature roasted peanuts are reportedly different in the level of Maillard reaction adducts (MRA) and IgE binding (i.e., allergenic capacity). Heating and sugar-protein interaction are the cause for the difference. The objective of this study was to determine if mature and immature raw peanuts (not roasted) are also different through treatment with a reducing sugar such as ribose, glucose or fructose at a mild temperature. Extracts from mature and immature raw peanuts were treated with individual sugars at 37?C and 50?C, respectively, for 0 - 10 days, and then assayed for MRA with nitroblue tetrazolium (NBT) in a time-course manner for 60 min. IgE binding was determined in an enzyme- linked immunosorbent assay (ELISA), using a pooled plasma from peanut-allergic individuals. Of the sugars tested, only ribose produced a big difference or a unique curve pattern in MRA between treated mature and immature peanuts. The unique curve pattern was more pronounced at 50?C (day 5 - 10) than at 37?C. IgE binding under this condition increased, but only with the ribose-treated mature raw peanut. It was concluded that mature and immature raw peanuts were different in MRA and IgE binding when treated with ribose only, and that under such a condition, mature and immature raw peanuts could be identified.展开更多
Ara h 2是花生主要过敏原之一,为开发食物中Ara h 2过敏原成分的快速检测方法,减少因误食导致花生过敏事件的发生,该研究采用鼠源单克隆抗体作为捕获抗体、兔源多克隆抗体作为检测抗体,通过棋盘法优化抗体工作浓度,建立了一种检测花生...Ara h 2是花生主要过敏原之一,为开发食物中Ara h 2过敏原成分的快速检测方法,减少因误食导致花生过敏事件的发生,该研究采用鼠源单克隆抗体作为捕获抗体、兔源多克隆抗体作为检测抗体,通过棋盘法优化抗体工作浓度,建立了一种检测花生过敏原Ara h 2的间接双抗夹心化学发光酶免疫分析法,并对该方法的灵敏度、准确度、精密度和特异性进行评价。该方法的检出限为1.085 ng/mL,线性范围为3.12~200 ng/mL,添加回收率为78.30%~94.39%,批内和批间变异系数均小于10%,且特异性良好,与其他常见食物过敏原无交叉反应。该方法与相同抗体所建立的间接双抗夹心酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)方法相比,在灵敏度上表现出一定优势。该研究开发的化学发光酶免疫分析法可对花生食品生产过程中和消费前的Ara h 2过敏原成分检测提供可靠的技术支持。展开更多
花生是“8大类”过敏原食物之一,因其诱发严重的临床症状及日益上升的发病率而受到广泛关注。文章概述了花生过敏原(Ara h 1-18)的结构特性、免疫特性及体内和体外评估方法,总结了不同食品加工对花生致敏性的研究进展,并展望了未来食品...花生是“8大类”过敏原食物之一,因其诱发严重的临床症状及日益上升的发病率而受到广泛关注。文章概述了花生过敏原(Ara h 1-18)的结构特性、免疫特性及体内和体外评估方法,总结了不同食品加工对花生致敏性的研究进展,并展望了未来食品加工技术对消减花生致敏性的研究方向。展开更多
研究了电子束辐照降低花生过敏原免疫原性的效果及辐照对花生生化性质的影响。选择2、4、6、8、10、15和20kGy剂量的电子束对花生过敏原液、脱脂花生粉进行辐照处理,辐照后花生主要过敏原(Ara h 1,Ara h 2,Ara h 3)蛋白分子质量的变化通...研究了电子束辐照降低花生过敏原免疫原性的效果及辐照对花生生化性质的影响。选择2、4、6、8、10、15和20kGy剂量的电子束对花生过敏原液、脱脂花生粉进行辐照处理,辐照后花生主要过敏原(Ara h 1,Ara h 2,Ara h 3)蛋白分子质量的变化通过SDS-聚丙烯酰胺凝胶电泳测定,免疫原性的变化通过免疫印迹和间接竞争ELISA法测定;辐照后花生过敏原溶液的浓度、浊度及疏水性的变化通过紫外分光光度计和荧光光度计分别进行测定。结果表明,花生过敏原在溶液状态比固体状态对辐照更为敏感。当辐照剂量低于10kGy时处理的过敏原液的免疫原性稍有增强,剂量大于10kGy时免疫原性降低,剂量为20kGy时过敏原液的IC50值是未处理的11倍。辐照使过敏液的浓度和浊度随着剂量的加大而增加,疏水性与对照组相比增强,但当剂量大于15kGy时降低。电子束辐照改变了过敏原的生化性质,降低了其免疫原性,比较而言,辐照对液体状态下过敏原的影响更显著。展开更多
花生中已确定的过敏原蛋白包括Ara h 1~Ara h 11 11种。本文详细介绍花生中主要过敏原蛋白(Ara h 1、Ara h 2、Ara h 3/4、Ara h 6)以及非主要过敏原蛋白(Ara h 7~Ara h 11)的分离纯化方法研究进展。花生过敏原蛋白的分离纯化方法包...花生中已确定的过敏原蛋白包括Ara h 1~Ara h 11 11种。本文详细介绍花生中主要过敏原蛋白(Ara h 1、Ara h 2、Ara h 3/4、Ara h 6)以及非主要过敏原蛋白(Ara h 7~Ara h 11)的分离纯化方法研究进展。花生过敏原蛋白的分离纯化方法包括硫酸铵沉淀法、柱层析法、电泳法。其中硫酸铵沉淀法主要用于粗提纯化过程,而柱层析法则主要用于花生过敏原蛋白的精制,它包括离子交换层析、凝胶过滤层析、亲和层析、疏水相互作用层析、高效液相色谱。目前离子交换层析和凝胶过滤层析在花生过敏原蛋白分离纯化中应用最为广泛,而电泳法则仅见应用于Ara h 7及油质蛋白(Ara h 10、Ara h 11)的分离纯化。展开更多
基金financially supported by the grants from the National Key R&D Program of China(No.2019YFC1605005)。
文摘Peanut allergy is considered to be a major health issue with global effects.To date,no effective curative approach has been applied for the therapy of the anaphylaxis resulting from the peanut allergens.The accurate and effective detection methods for the surveillance of allergens in food are still the primary strategies to avoid allergic diseases.In this study,nanobodies(Nbs)derived from the Heavy-Chain only Antibodies(HCAbs)were selected against the general peanut protein extract through the unbiased strategy to facilitate the development of the sandwich ELISA for the detection and surveillance of peanut allergen contamination.The target antigen of the selected Nb was identified as peanut allergen Ara h 3,and a cross-reaction was observed with the member of Gly 1 from the Ara h 3 family.The applicability of the self-paired Nb P43 on the establishment of the immuno-assay was verified.A sandwich ELISA against peanut allergen was developed,which reached a linear range of 0.2-10.6μg/mL,and a limit of detection of 53.13 ng/mL.
文摘Despite being known as resistant proteins, peanut allergens (Ara h 1 and Ara h 2) can be digested and cause allergic reactions. Making the allergens more resistant to digestion may aid in non-absorption and excretion of the allergens. Our objectives were to make Ara h 1 and Ara h 2 more resistant to digestion and test them in a model system using trypsin as the digestive enzyme. The resistant allergens were prepared by covalently attaching p-aminobenzamidine (pABA), a protease inhibitor, to peanut allergens in an extract or on a PVDF membrane using glutaraldehyde, and were then tested for resistance to trypsin digestion. SDS-PAGE and Western blot were performed to determine the allergenic capacity of the modified allergens. A control was prepared using glycine instead. Results showed that Ara h 2, when covalently attached with pABA, was more resistant to trypin digestion than the native allergen. Similarly, Ara h 1, prepared on a PVDF membrane and treated with pABA, displayed a resistance to trypsin digestion. Treatment of the allergens with glycine (a control) instead of pABA showed that the modified allergens were as digestible as native allergens. Blot assays showed that the pABA-treated allergens exhibited a lower allergenic capacity than native allergens. It was concluded that pABA, when attached to peanut allergen Ara h 1 or Ara h 2, inhibited digestion of the allergen by trypsin and reduced their allergenic capacity as well.
基金supported by Cuisine Science Key Laboratory of Sichuan Province(Grant number:PRKX 2021Z01).
文摘Peanut allergy is a type of serious food allergy worldwide.In this study,peanuts were treated with two different cooking methods.The effect of cooking on digestion stability was evaluated by simulated gastrointestinal digestions.The effects of cooking on the allergenicity were assessed by immunoblotting,passive cutaneous anaphylaxis (PCA) mice model and rat basophilic leukemia (RBL)-2H3 cell model.Results showed that raw peanuts were more stable to digestion than boiled and fried peanuts.SDS-PAGE showed that the quantities of allergens Ara h 1 (64 kDa),Ara h 2 (20 kDa),and Ara h 3 (38 kDa) in the boiled and fried peanuts were all reduced.Meanwhile,immunoblotting revealed the IgE binding capacities of boiled and fried peanuts were decreased significantly,especially the fried peanuts.In the PCA mice model,the vascular permeability of allergic mice,as well as the release of histamine,were both alleviated in mice gavaged with boiled and fried peanuts compared with raw peanuts.Lastly,the release of β-hexosaminidase of RBL-2H3 cells treated with boiled and fried peanuts was significantly decreased compared with the raw peanuts.In addition,the analyses of circular dichroism (CD) spectra showed that the α-helical content of peanut proteins was decreased after boiling and frying,indicating the structure stability of peanut allergens decreased.The analyses of ultraviolet (UV) spectra showed that aromatic amino acid residues were exposed,causing the change of the tertiary structure of peanut allergens after boiling and frying.In conclusion,the allergenicity of peanuts was significantly reduced after boiling and frying,especially frying.
基金Supported by Scientific Research Project of Anhui Bureau of Quality and Technical Supervision(13zj370033)
文摘Peanut,sesame and other raw materials of food are allergens for special populations.In this study,specific primers and TaqMan probes labeled by different fluorescences were designed targeting Ara h 2 gene of peanut and Ses i 1 gene of sesame.After the optimization of reaction conditions,a real-time fluorescent PCR method was established for simultaneous detection of allergenic ingredients of peanut and sesame in food.Genomic DNA samples of peanut,sesame,rice,wheat,barley,soybean,celery,maize,potato,tomato,walnut,groundnut in shell,cashew nut,sunflower seed,almond,apple,pear and strawberry,pork,beef,mutton and fish were used as templates for PCR amplification with deionized water as negative control template.Results indicated that the established real-time fluorescent PCR method could specifically identify allergenic ingredients of peanut and sesame simultaneously.Sensitivity test showed that the minimum detection limit of this method was 0.01%.Therefore,the established real-time fluorescent PCR method is a specific,sensitive and effective assay for simultaneously detecting allergenic ingredients of peanut and sesame in food.
文摘Mature and immature roasted peanuts are reportedly different in the level of Maillard reaction adducts (MRA) and IgE binding (i.e., allergenic capacity). Heating and sugar-protein interaction are the cause for the difference. The objective of this study was to determine if mature and immature raw peanuts (not roasted) are also different through treatment with a reducing sugar such as ribose, glucose or fructose at a mild temperature. Extracts from mature and immature raw peanuts were treated with individual sugars at 37?C and 50?C, respectively, for 0 - 10 days, and then assayed for MRA with nitroblue tetrazolium (NBT) in a time-course manner for 60 min. IgE binding was determined in an enzyme- linked immunosorbent assay (ELISA), using a pooled plasma from peanut-allergic individuals. Of the sugars tested, only ribose produced a big difference or a unique curve pattern in MRA between treated mature and immature peanuts. The unique curve pattern was more pronounced at 50?C (day 5 - 10) than at 37?C. IgE binding under this condition increased, but only with the ribose-treated mature raw peanut. It was concluded that mature and immature raw peanuts were different in MRA and IgE binding when treated with ribose only, and that under such a condition, mature and immature raw peanuts could be identified.
文摘Ara h 2是花生主要过敏原之一,为开发食物中Ara h 2过敏原成分的快速检测方法,减少因误食导致花生过敏事件的发生,该研究采用鼠源单克隆抗体作为捕获抗体、兔源多克隆抗体作为检测抗体,通过棋盘法优化抗体工作浓度,建立了一种检测花生过敏原Ara h 2的间接双抗夹心化学发光酶免疫分析法,并对该方法的灵敏度、准确度、精密度和特异性进行评价。该方法的检出限为1.085 ng/mL,线性范围为3.12~200 ng/mL,添加回收率为78.30%~94.39%,批内和批间变异系数均小于10%,且特异性良好,与其他常见食物过敏原无交叉反应。该方法与相同抗体所建立的间接双抗夹心酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)方法相比,在灵敏度上表现出一定优势。该研究开发的化学发光酶免疫分析法可对花生食品生产过程中和消费前的Ara h 2过敏原成分检测提供可靠的技术支持。
文摘研究了电子束辐照降低花生过敏原免疫原性的效果及辐照对花生生化性质的影响。选择2、4、6、8、10、15和20kGy剂量的电子束对花生过敏原液、脱脂花生粉进行辐照处理,辐照后花生主要过敏原(Ara h 1,Ara h 2,Ara h 3)蛋白分子质量的变化通过SDS-聚丙烯酰胺凝胶电泳测定,免疫原性的变化通过免疫印迹和间接竞争ELISA法测定;辐照后花生过敏原溶液的浓度、浊度及疏水性的变化通过紫外分光光度计和荧光光度计分别进行测定。结果表明,花生过敏原在溶液状态比固体状态对辐照更为敏感。当辐照剂量低于10kGy时处理的过敏原液的免疫原性稍有增强,剂量大于10kGy时免疫原性降低,剂量为20kGy时过敏原液的IC50值是未处理的11倍。辐照使过敏液的浓度和浊度随着剂量的加大而增加,疏水性与对照组相比增强,但当剂量大于15kGy时降低。电子束辐照改变了过敏原的生化性质,降低了其免疫原性,比较而言,辐照对液体状态下过敏原的影响更显著。
文摘花生中已确定的过敏原蛋白包括Ara h 1~Ara h 11 11种。本文详细介绍花生中主要过敏原蛋白(Ara h 1、Ara h 2、Ara h 3/4、Ara h 6)以及非主要过敏原蛋白(Ara h 7~Ara h 11)的分离纯化方法研究进展。花生过敏原蛋白的分离纯化方法包括硫酸铵沉淀法、柱层析法、电泳法。其中硫酸铵沉淀法主要用于粗提纯化过程,而柱层析法则主要用于花生过敏原蛋白的精制,它包括离子交换层析、凝胶过滤层析、亲和层析、疏水相互作用层析、高效液相色谱。目前离子交换层析和凝胶过滤层析在花生过敏原蛋白分离纯化中应用最为广泛,而电泳法则仅见应用于Ara h 7及油质蛋白(Ara h 10、Ara h 11)的分离纯化。