Peanut root invasion by Bradyrhizobia is through a crack entry, which is different from many other legumes applying an infection thread entry in root hair. Understanding the role of root hair in the crack entry of Bra...Peanut root invasion by Bradyrhizobia is through a crack entry, which is different from many other legumes applying an infection thread entry in root hair. Understanding the role of root hair in the crack entry of Bradyrhizobia invasion of peanut root and subsequent peanut nodulation would facilitate improvement of biological nitrogen fixation in cultivated peanut. The objective of this study was to investigate the involvement of root hair in Bradyrhizobial invasion of peanut. Seedling roots of a nodulating peanut cultivar were observed for root hair emergence, its life span, and nodule formation at the base of the lateral roots with and without rhizobia inoculation for 14 days after germination (DAG). Scanning electron microscopy (SEM) was utilized to observe rhizobia accumulation at lateral roots at 24 hours after inoculation (HAI) before the emergence of root hair. Root hair emerged at 7 DAG with or without rhizobia inoculation. Two variations of rosette hair (RoH) were observed, the transient-thin RoH had life span of 3 days after root hair emergence and the thick and densely distributed RoH type stayed till the time of nodule emergence (9 days after inoculation). The lateral root devoid of root hair at the top 2 cm region was found to produce nodules. The SEM observation of seedling roots at 24 HAI showed that Bradyrhizobia invaded the roots at epidermis, protoplasm of cortical cell, and cortical cells of the main root near the newly emerged lateral root in the absence of RoH. The observations validated that root hair is not required in the Bradyrhizobia invasion of peanut root in the crack entry mode. Results from this study provided important morphological information for the hypothesis of close relationship between RoH and peanut nodulation for further genetic study of crack entry mechanism and signaling pathway of symbiosis between Bradyrhizobia and peanut.展开更多
Double-seed sowing(two seeds per hole)is the dominant pattern of peanut sowing in China,but within-hole plant competition usually limits their growth and yield formation.Besides,the traditional double-seed sowing meth...Double-seed sowing(two seeds per hole)is the dominant pattern of peanut sowing in China,but within-hole plant competition usually limits their growth and yield formation.Besides,the traditional double-seed sowing method does not facilitate mechanization during sowing.The objective of this study was to determine if single-seed sowing at a proper seeding rate yielded better than traditional double-seed sowing pattern and the differences of physiological metabolism of roots.A field experiment was conducted in two consecutive years to compare pod yields of single-seed sowing at 180000(S180),225000(S225),and 270000 seeds ha^-1(S270)with that of double-seed sowing at 270000 seeds ha^-1(D270)using a completely randomized block design with four replications.And the root bleeding sap rate,nutrient content,and the main hormone contents in root bleeding sap were also comparatively investigated.Although the pod yields of single-seed sowing at the three densities were higher than that of traditional double-seed sowing(D270),S225 yielded better than the other two single-seed sowing treatments(S180 and S270).The increased pod yield in single-seed sowing at 225000 seeds ha^-1 was mainly due to the higher pod dry weight per plant and harvest index.The improved pod dry weight and shoot growth had closely relationship with the enhanced root physiological traits such as the increased root bleeding sap rate,content of free amino acids,soluble sugars,K^+,Mg^2+,Zn^2+,and Ca^2+of the individual plant root.The improved activity of root reductive,nitrate reductase(NR)and ATPase and higher zeatin and zeatin riboside(Z+ZR)content of root bleeding sap were alsocrucial to the pod and shoot growth of peanut.Single-seed sowing at a moderate seeding rate(S225)is a potential practice to increase pod yield and to save seed cost.展开更多
文摘Peanut root invasion by Bradyrhizobia is through a crack entry, which is different from many other legumes applying an infection thread entry in root hair. Understanding the role of root hair in the crack entry of Bradyrhizobia invasion of peanut root and subsequent peanut nodulation would facilitate improvement of biological nitrogen fixation in cultivated peanut. The objective of this study was to investigate the involvement of root hair in Bradyrhizobial invasion of peanut. Seedling roots of a nodulating peanut cultivar were observed for root hair emergence, its life span, and nodule formation at the base of the lateral roots with and without rhizobia inoculation for 14 days after germination (DAG). Scanning electron microscopy (SEM) was utilized to observe rhizobia accumulation at lateral roots at 24 hours after inoculation (HAI) before the emergence of root hair. Root hair emerged at 7 DAG with or without rhizobia inoculation. Two variations of rosette hair (RoH) were observed, the transient-thin RoH had life span of 3 days after root hair emergence and the thick and densely distributed RoH type stayed till the time of nodule emergence (9 days after inoculation). The lateral root devoid of root hair at the top 2 cm region was found to produce nodules. The SEM observation of seedling roots at 24 HAI showed that Bradyrhizobia invaded the roots at epidermis, protoplasm of cortical cell, and cortical cells of the main root near the newly emerged lateral root in the absence of RoH. The observations validated that root hair is not required in the Bradyrhizobia invasion of peanut root in the crack entry mode. Results from this study provided important morphological information for the hypothesis of close relationship between RoH and peanut nodulation for further genetic study of crack entry mechanism and signaling pathway of symbiosis between Bradyrhizobia and peanut.
基金supported by the National Key R&D Program of China(2018YFD1000900)the National Natural Science Foundation of China(31571605,31801276)+5 种基金the Major Basic Research Project of Natural Science Foundation of Shandong Province,China(2018GHZ007)the Major Scientific and Technological Innovation Project in Shandong Province,China(2018YFJH0601)the Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2018D04,CXGC2016B03-1)the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2018E13,CXGC2016B10,CXGC2018F6)the Major Agricultural Application Technology Innovation Project in Shandong Province,China(201706)the earmarked fund for China Agriculture Research System(CARS-13)。
文摘Double-seed sowing(two seeds per hole)is the dominant pattern of peanut sowing in China,but within-hole plant competition usually limits their growth and yield formation.Besides,the traditional double-seed sowing method does not facilitate mechanization during sowing.The objective of this study was to determine if single-seed sowing at a proper seeding rate yielded better than traditional double-seed sowing pattern and the differences of physiological metabolism of roots.A field experiment was conducted in two consecutive years to compare pod yields of single-seed sowing at 180000(S180),225000(S225),and 270000 seeds ha^-1(S270)with that of double-seed sowing at 270000 seeds ha^-1(D270)using a completely randomized block design with four replications.And the root bleeding sap rate,nutrient content,and the main hormone contents in root bleeding sap were also comparatively investigated.Although the pod yields of single-seed sowing at the three densities were higher than that of traditional double-seed sowing(D270),S225 yielded better than the other two single-seed sowing treatments(S180 and S270).The increased pod yield in single-seed sowing at 225000 seeds ha^-1 was mainly due to the higher pod dry weight per plant and harvest index.The improved pod dry weight and shoot growth had closely relationship with the enhanced root physiological traits such as the increased root bleeding sap rate,content of free amino acids,soluble sugars,K^+,Mg^2+,Zn^2+,and Ca^2+of the individual plant root.The improved activity of root reductive,nitrate reductase(NR)and ATPase and higher zeatin and zeatin riboside(Z+ZR)content of root bleeding sap were alsocrucial to the pod and shoot growth of peanut.Single-seed sowing at a moderate seeding rate(S225)is a potential practice to increase pod yield and to save seed cost.