Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic aci...Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway.展开更多
The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the p...The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the present study, the rootstock of the dwarf-type pear (Pyrus betulaefolia)PY-9’ was identified and used as the material for anatomical analysis.PY-9’ grew to half the tree height of the normal cultivar Zhengdu’, along with fewer internodes and shorter length. Significant differences in growth rate betweenPY-9’ andZhengdu’ were detected at approximately 30 days after full bloom, which corresponded with the time of the greatest difference in water potential between the dwarf and normal cultivar.PY-9’ showed a higher photosynthetic rate thanZhengdu’. Anatomical analysis showed thatPY-9’ had higher area ratios of both phloem and xylem and more developed vascular tissues thanZhengdu’. The three-dimensional reconstructed skeleton of the xylem from X-ray computed tomography scanning revealed greater intervessel connectivity inZhengdu’ than inPY-9’, which could contribute to the more vigorous growth ofZhengdu’. This study thus provides the first comparison of the microstructural properties of xylem elements between a dwarfing-type and vigorous-type pear rootstock, providing new insights into the dwarfing mechanism in pear and facilitating breeding of dwarf pear rootstocks to increase crop productivity.展开更多
The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied...The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied by the degradation of damaged substances in cells and the recycling of nutrients. Autophagy is one of the mechanisms through which plants respond to environmental stress and plays an important role in plant development and stress resistance. Functional studies of autophagy-related genes (ATGs) have been performed on a variety of plant species, but little information is available on the ATG family in pear (Pyrus bretschneideri Rehd). Therefore, we analyzed the evolutionary dynamics and performed a genome-wide characterization of the PbrATG gene family. A total of 28 PbrATG members were identified.Phylogenetic analysis showed that PbrATGs were more closely related to ATGs of European pear and apple. Evolutionary analysis revealed that whole-genome duplication (WGD) and dispersed duplication events were the main driving forces of PbrATG family expansion.Expression analysis of different pear tissues showed that all the genes were expressed in different pear tissues, and different PbrATGs are expressed at different times and in different locations. Moreover, all PbrATGs also responded to different abiotic stresses, especially salt and drought stress, which elicited the highest expression levels. Pear seedlings were subsequently infected with Botryosphaeria dothidea (B.dothidea). The results showed that different PbrATGs had different expression patterns at different infection stages. According to the gene expression data, PbrATG1a was selected as a key autophagy gene for further analysis. Silencing of PbrATG1a reduced the resistance of pear to B. dothidea, which resulted in increased lesions, reactive oxygen species (ROS) contents, antioxidant enzyme activity, and gene expression levels in the silenced pear seedlings after B. dothidea inoculation. In this study, a comprehensive bioinformatic analysis of ATGs was conducted, and the functions of PbrATGs in pear development and in response to stress were elucidated, which laid a foundation for further study of the molecular mechanism of autophagy and a new strategy for pear resistance breeding.展开更多
As there is a strong interest in red-skinned pears,the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated;however,little is known about the molecular mechanism of anthocyan...As there is a strong interest in red-skinned pears,the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated;however,little is known about the molecular mechanism of anthocyanin regulation in red-fleshed pears due to limited availability of such germplasm,primarily found in European pears(Pyrus communis).In this study,based on transcriptomic analysis in red-fleshed and white-fleshed pears,we identified an ethylene response factor(ERF)from P.communis,PcERF5,of which expression level in fruit flesh was significantly correlated with anthocyanin content.We then verified the function of PcERF5 in regulating anthocyanin accumulation by genetic transformation in both pear skin and apple calli.PcERF5 regulated anthocyanin biosynthesis by different regulatory pathways.On the one hand,PcERF5 can activate the transcription of flavonoid biosynthetic genes(PcDFR,PcANS and PcUFGT)and two key transcription factors encoding genes PcMYB10 and PcMYB114.On the other hand,PcERF5 interacted with PcMYB10 to form the ERF5-MYB10 protein complex that enhanced the transcriptional activation of PcERF5 on its target genes.Our results suggested that PcERF5 functioned as a transcriptional activator in regulating anthocyanin biosynthesis,which provides new insights into the regulatory mechanism of anthocyanin biosynthesis.This new knowledge will provide guidance for molecular breeding of red-fleshed pear.展开更多
Low temperature is among the most restrictive factors to limit the yield and distribution of pear. Pyrus hopeiensis is a valuable wild resource.PCA showed that P. hopeiensis had strong cold resistance. In this study, ...Low temperature is among the most restrictive factors to limit the yield and distribution of pear. Pyrus hopeiensis is a valuable wild resource.PCA showed that P. hopeiensis had strong cold resistance. In this study, the mRNA and metabolome sequencing of P. hopeiensis flower organs exposed to different low temperatures were performed to identify changes of genes and metabolites in response to low-temperature stress. A total of 4 851 differentially expressed genes(DEGs) were identified. Trend analysis showed that these DEGs were significantly enriched in profiles 19, 18, 7, 14, 1, 4 and 11. And the KEGG enrichment analysis showed that the DEGs in profile 18 were significantly enriched in flavone and flavonol biosynthesis. Besides, the expressed trends as well as GO and KEGG functional enrichment analyses of DEGs under cold and freezing stress showed significantly difference. Analyses of flavonoid-related pathways indicated that flavonoid structural genes had undergone significant changes. Correlation analysis showed that b HLH and MYB TFs may affect flavonoid biosynthesis by regulating structural gene expression. And PhMYB308 and PhMYB330 were likely candidate repressors of flavonoid biosynthesis by binding to a specific site in bHLH proteins. In total, 92 differentially accumulated metabolites(DAMs) were identified in P. hopeiensis flowers including 12 flavonoids. WGCNA results showed that coral 1, pink and brown 4 modules were closely associated with flavonoids and 11 MYBs and 15 bHLHs among the three modules may activate or inhibit the expression of 23 structural genes of flavonoid biosynthesis. Taken together, the results of this study provided a theoretical basis for further exploration of the molecular mechanisms of flavonoid biosynthesis and cold resistance of P. hopeiensis flower organs and our findings laid a foundation for further molecular breeding in cold-resistant pear varieties.展开更多
The identification of self-incompatibility genotype (S-genotype) will be useful for selection of pollinizers and design of crossing in cultivar improvement of sand pear. This paper reported the identification of sel...The identification of self-incompatibility genotype (S-genotype) will be useful for selection of pollinizers and design of crossing in cultivar improvement of sand pear. This paper reported the identification of self-incompatibility genotypes of seven Chinese and two Japanese sand pear cultivars using PCR-RFLP analysis and S-RNase sequencing. The Sgenotypes of these cultivars were determined as follows: Huali 1 S1S3, Shounan S1S3, Xizilti S1S4, Qingxiang S3S7, Sanhua S2S7, Huangmi (Imamuranatsu) S1S6, Huali 2 S3S4, Baozhuli S7S33, Cangxixueli S5S15. S-RNase alleles (S1 to S9) in sand pear could be identified effectively by PCR-RFLP analysis.展开更多
Pear is a popular and commercially important fresh fruit, and its texture is related to the presence of sclereid formatted by parenchyma cell with lignification in vascular plants. Previous studies have demonstrated t...Pear is a popular and commercially important fresh fruit, and its texture is related to the presence of sclereid formatted by parenchyma cell with lignification in vascular plants. Previous studies have demonstrated that content of lignin may be regulated by cinnamoyl CoA reductase(CCR) in various plants. However, the function of CCR in pears remains very limited. In the present study, we isolated a cDNA encoding CCR(PpCCR, GenBank accession No. KF999958) and its promoter(proPpCCR) from Whangkeumbae pear to investigate the function of CCR in lignin biosynthesis. PpCCR-GFP expressed in rice mesophyll protoplast demonstrated that PpCCR-GFP was localized in the cytoplasm, indicating that CCR may function in cytoplasm without localization signals. In transgenic plants carrying PpCCR, we observed higher lignin content compared with that in wild type plants, further suggesting that PpCCR can affect the lignin contents through regulating lignin biosynthesis in Arabidopsis thaliana. More studies in other plants are needed to confirm our conclusion.展开更多
Germplasm resources are an important basis for genetic breeding and analysis of complex traits,and research on genetic diversity is conducive to the exploration and creation of new types of germplasm.In this study,the...Germplasm resources are an important basis for genetic breeding and analysis of complex traits,and research on genetic diversity is conducive to the exploration and creation of new types of germplasm.In this study,the distribution frequency,coefficient of variation,Shannon-Wiener index,and variance and cluster analyses were used to analyze the diversity and trait differences of 39 fruit phenotypic traits from 570 pear accessions,which included 456 pear accessions from 11 species and 114 interspecific hybrid cultivars that had been stored in the National Germplasm Repository of Apple and Pear(Xingcheng,China).The comprehensive evaluation indices were screened by correlation,principal component and regression analyses.A total of 132 variant types were detected in 28 categorical traits of pear germplasm fruit,which indicate a rich diversity.The diversity indices in decreasing order were:fruit shape(1.949),attitude of calyx(1.908),flesh texture type(1.700),persistency of calyx(1.681),russet location(1.658),relief of area around eye basin(1.644),flavor(1.610)and ground color(1.592).The coefficient of variation of titratable acidity in the 11 numerical traits of pear germplasm fruit was as high as 128.43%,which could more effectively reflect the differences between pear accessions.The phenotypic differentiation coefficient V_(st)(66.4%)among the five cultivated pear species,including Pyrus bretschneideri(White Pear),P.pyrifolia(Sand Pear),P.ussuriensis(Ussurian Pear),P.sinkiangensis(Xinjiang Pear),and P.communis(European Pear),was higher than the within population phenotypic differentiation coefficient V_(st)(33.6%).The variation among populations was the main source of variation in pear fruit traits.A hierarchical cluster analysis divided the 389 accessions of six cultivated pear species,including P.pashia(Himalayan Pear),into six categories.There were certain characteristics within the populations,and the differences between populations were not completely clustered by region.For example,Sand Pear cultivars from Japan and the Korean Peninsula clustered together with those from China.Most of the White Pear cultivars clustered with the Sand Pear,and a few clustered with the Ussurian Pear cultivars.The Ussurian Pear and European Pear cultivars clustered separately.The Xinjiang Pear and Himalayan Pear did not cluster together,and neither did the cultivars.Seventeen traits,three describing fruit weight and edible rate(fruit diameter,fruit length and fruit core size),five describing outer quality and morphological characteristics(over color,amount of russeting,dot obviousness,fruit shape,and stalk length),and nine describing inner quality(flesh color,juiciness of flesh,aroma,flavor,flesh texture,flesh texture type,soluble solid contents,titratable acidity,and eating quality)were selected from the 39 traits by principal component and stepwise regression analyses.These 17 traits could reflect 99.3%of the total variation and can be used as a comprehensive evaluation index for pear germplasm resources.展开更多
Stone cells have been described to substantially influence pear fruit quality,as lignin and cellulose are the main components of stone cells.However,there are limited studies on the relationship between the variation ...Stone cells have been described to substantially influence pear fruit quality,as lignin and cellulose are the main components of stone cells.However,there are limited studies on the relationship between the variation and molecular basis of stone cells,lignin and cellulose content among different pear varieties.Here,to reveal the variation of stone cell content within different cultivated species,we collected 236 germplasms of sand pear(Pyrus pyrifolia)at 50 days after flower blooming(DAFB),the key stage of stone cell formation.In our results,we measured the content of stone cells,lignin and cellulose and found that these contents ranged from2.82%to 29.00%,8.84%to 55.30%and 11.52%to 30.55%,respectively.Further analysis showed that the variation coefficient of stone cell,lignin and cellulose content was 39.10%,28.03%and 16.71%,respectively.Additionally,a significant correlation between stone cell,lignin and cellulose content were detected,and the correlation coefficient between the contents of stone cell and lignin(0.912)was higher than between the contents of stone cell and cellulose(0.796).Moreover,the average lignin content(29.73%)was higher than the average cellulose content(18.03%)in stone cells in pear fruits,indicating that lignin is the main component of stone cell in pears.Finally,on the basic of the transcriptome data,we identified 10 transcription factors belonging to bHLH,ERF,MYB,and NAC transcript families,which might be involved in lignin formation in stone cells.qRT-PCR experiments verified coincident trends between expression of candidate genes and stone cell content.This research laid foundation for future studies on genetic variation of stone cells in pear fruits and provided important gene resources for stone cell regulation.展开更多
Pears carry a gametophytic self-incompatibility(SI)system.In this system,S-RNase is the SI pistil determinant,and S-locus F-box brothers(SFBBs)are candidate pollen determinants.However,compared with apple,fewer SFBB g...Pears carry a gametophytic self-incompatibility(SI)system.In this system,S-RNase is the SI pistil determinant,and S-locus F-box brothers(SFBBs)are candidate pollen determinants.However,compared with apple,fewer SFBB genes were identified from pear,possibly caused by the lack of economic and effective methods.Here,we used transcriptome sequencing on‘Yali’(Pyrus bretschneideri)to obtain sequence fragments of SFBB genes and then used polymerase chain reaction(PCR)to amplify the whole sequence of SFBB genes.Twenty-seven SFBB genes,including22 full-length and five nonfull-length SFBB genes,were identified in‘Yali’(P.bretschneideri).SFBBs linkage analysis by PCR-enzyme-linked immunoassay(ELISA)showed that 12 SFBB genes belong to the S21 locus,and 15 SFBB genes belong to the S34 locus.Phylogenetic analysis showed that SFBB genes from Pyrus were divided into 26 types,more than the original eight types.The intrahaplotypic divergence of SFBBs is high and comparable to the allelic diversity of S-RNase,which is consistent with a nonself-recognition SI system.In addition,the expression level of PbrSFBBs in‘Jinzhui’,the only known haploid pollen of a self-compatible mutant,was mostly approximately two times higher than in‘Yali’,which may be the reason for the self-compatible mutant.展开更多
Salicylic acid(SA) plays a pivotal role in delaying fruit ripening and senescence. However, little is known about its underlying mechanism of action. In this study, RNA sequencing was conducted to analyze and compare ...Salicylic acid(SA) plays a pivotal role in delaying fruit ripening and senescence. However, little is known about its underlying mechanism of action. In this study, RNA sequencing was conducted to analyze and compare the transcriptome profiles of SA-treated and control pear fruits. We found a total of 159 and 419 genes differentially expressed between the SA-treated and control pear fruits after 12 and 24 h of treatment, respectively. Among these differentially expressed genes(DEGs), 125 genes were continuously differentially expressed at both treatment times, and they were identified as candidate genes that might be associated with SA-regulated fruit ripening and senescence. Bioinformatics analysis results showed that 125 DEGs were mainly associated with plant hormone biosynthesis and metabolism, cell wall metabolism and modification, antioxidant systems, and senescence-associated transcription factors. Additionally, the expression of several candidate DEGs in ripening and senescent pear fruits after SA treatments were further validated by quantitative real-time PCR(qRT-PCR). This study provides valuable information and enhances the understanding of the comprehensive mechanisms of SA-meditated pear fruit ripening and senescence.展开更多
The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been ide...The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been identified in other species,such as Arabidopsis,Oryza sativa,and grapevine,few reports on pear ATL gene families have been reported.In this study,92 PbrATL genes were identified and analyzed from the Pyrus breschneideri genome.Motif analysis and phylogenetic tree generation divided them into nine subgroups,and chromosome localization analysis showed that the 92 PbrATL genes were distributed in 16 of 17 pear chromosomes.Transcriptome data and quantitative real-time polymerase chain reaction(qRT-PCR)experiments demonstrated that PbrATL18,PbrATL41,and PbrATL88 were involved in both pear drought resistance and Colletotrichum fructicola infection.In addition,Arabidopsis thaliana overexpressing PbrATL18 showed greater resistance to drought stress than the wild type(WT),and PbrATL18-silenced pear seedlings showed greater sensitivity to drought and C.fructicola infection than the controls.PbrATL18 regulated plant resistance by regulating chitinase(CHI),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO),catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD)activities.This study provided a reference for further exploring the functions of the PbrATL gene in drought resistance and C.fructicola infection.展开更多
Anthocyanins are important components in the peel of red pears and contribute to the appearance of the fruit.Melatonin application is known to affect anthocyanin biosynthesis,but the effect of preharvest melatonin app...Anthocyanins are important components in the peel of red pears and contribute to the appearance of the fruit.Melatonin application is known to affect anthocyanin biosynthesis,but the effect of preharvest melatonin application on fruit coloration remains largely unknown.The objective of this study was to determine the effects of preharvest melatonin application on pigmentation,phenolic compounds,and the expression of related genes in Nanhong pear(Pyrus ussuriensis).The applications were performed during the pre-color-change period by spraying 50 or 200μmol L^(-1)of melatonin on fruits.We found that treatment with melatonin had a significant effect on color development.The concentrations of anthocyanins and flavonols were enhanced by melatonin treatment,whereas hydroxycinnamate and flavanol concentrations were reduced.Quantitative real-time PCR analyses indicated that the transcription levels for most anthocyanin biosynthetic genes and anthocyanin-related transcription factors were induced by melatonin.Melatonin application also stimulated the expression of melatonin biosynthesis-related genes and consequently caused an increase in endogenous melatonin concentration.These results provide insights into melatonin-induced fruit coloration and will facilitate the application of exogenous melatonin in agriculture.展开更多
Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the train...Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the training population (TP) size on pear GS for improving its performance and reducing cost. We evaluated GS under two scenarios:(1) five-fold cross-validation in an interspecific pear family;(2) independent validation. Based on the cross-validation scheme, the prediction accuracy (PA) of eight fruit traits varied between 0.33 (fruit core vertical diameter)and 0.65 (stone cell content). Except for single fruit weight, a slightly better prediction accuracy (PA) was observed for the five parametrical methods compared with the two non-parametrical methods. In our TP of 310 individuals, 2 000 single nucleotide polymorphism (SNP) markers were sufficient to make reasonably accurate predictions. PAs for different traits increased by 18.21%-46.98%when the TP size increased from 50to 100, but the increment was smaller (-4.13%-33.91%) when the TP size increased from 200 to 250. For independent validation, the PAs ranged from 0.11 to 0.45 using rrBLUP method. In summary, our results showed that the TP size and SNP numbers had a greater impact on the PA than prediction methods. Furthermore, relatedness among the training and validation sets, and the complexity of traits should be considered when designing a TP to predict the test panel.展开更多
Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (...Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.展开更多
The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we d...The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we de novo assembled and annotated the genomes of the maternal(PsbM)and paternal(PsbF)lines of the hybrid‘Yuluxiang'pear and constructed the pear pangenome of 1.15 Gb by combining these two genomes with five previously published pear genomes representing cultivated and wild germplasm.Using the constructed pangenome,we identified 21224 gene PAVs(Presence-absence variation)and 1158812 SNPs(Single Nucleotide Polymorphism)in the non-reference genome that were absent in the PsbM reference genome.Compared with SNP markers,PAV-based analysis provides additional insights into the pear population structure.In addition,some genes associated with pear fruit quality traits have differential occurrence frequencies and differential gene expression between Asian and European populations.Moreover,our analysis of the pear pangenome revealed a mutated SNP and an insertion in the promoter region of the gene PsbMGH3.1 potentially enhance sepal shedding in‘Xuehuali'which is vital for pear quality.PsbMGH3.1 may play a role in the IAA pathway,contributing to a distinct low-auxin phenotype observed in plants by heterologously overexpressing this gene.This research helps capture the genetic diversity of pear populations and provides genomic resources for accelerating breeding.展开更多
During storage at 20℃,specific pear cultivars may exhibit a greasy texture and decline in quality due to fruit senescence.Among these varieties,‘Yuluxiang’is particularly susceptible to peel greasiness,resulting in...During storage at 20℃,specific pear cultivars may exhibit a greasy texture and decline in quality due to fruit senescence.Among these varieties,‘Yuluxiang’is particularly susceptible to peel greasiness,resulting in significant economic losses.Therefore,there is an urgent need for a preservative that can effectively inhibit the development of greasiness.Previous studies have demonstrated the efficacy of 1-methylcyclopropene(1-MCP)in extending the storage period of fruits.We hypothesize that it may also influence the occurrence of postharvest peel greasiness in the‘Yuluxiang’pears.In this study,we treated‘Yuluxiang’pears with 1-MCP.We stored them at 20℃while analyzing the composition and morphology of the surface waxes,recording enzyme activities related to wax synthesis,and measuring indicators associated with fruit storage quality and physiological characteristics.The results demonstrate that prolonged storage at 20℃leads to a rapid increase in skin greasiness,consistent with the observed elevations in L^(*),greasiness score,and the content of total wax and greasy wax components.Moreover,there were indications that cuticular waxes underwent melting,resulting in the formation of an amorphous structure.In comparison to controls,the application of 1-MCP significantly inhibited increments in L^(*) values as well as grease scores while also reducing accumulation rates for oily waxes throughout most stages over its shelf period,additionally delaying transitions from flaky-wax structures towards their amorphous counterparts.During the initial 7 d of storage,several enzymes involved in the biosynthesis and metabolism of greasy wax components,including lipoxygenase(LOX),phospholipase D(PLD),andβ-ketoacyl-CoA synthase(KCS),exhibited an increase followed by a subsequent decline.The activity of LOX during early shelf life(0–7 d)and the KCS activity during middle to late shelf life(14–21 d)were significantly suppressed by 1-MCP.Additionally,1-MCP effectively maintained firmness,total soluble solid(TSS)and titratable acid(TA)contents,peroxidase(POD),and phenylalanine ammonia-lyase(PAL)activities while inhibiting vitamin C degradation and weight loss.Furthermore,it restrained polyphenol oxidase(PPO)activity,ethylene production,and respiration rate increase.These findings demonstrate that 1-MCP not only delays the onset of peel greasiness but also preserves the overall storage quality of‘Yuluxiang’pear at a temperature of 20℃.This study presents a novel approach for developing new preservatives to inhibit pear fruit peel greasiness and provides a theoretical foundation for further research on pear fruit preservation.展开更多
As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear...As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear.According to transcriptome data,we identified PbGIF1was highly expressed during fruit development in cytokinins induced parthenocarpy pear.In the present study,the biofunction of PbGIF1 was initially verified.Overexpression of PbGIF1 promoted fruit size of transgenic tomato.The size of flesh fruit was not affected by cell expansion but the cell proliferation was promoted by overexpressing Pb GIF1.The accelerated cell proliferation process was also observed in PbGIF1-overexpressed transgenic pear fruit calli.The transcriptional regulation of cytokinins on PbGIF1 was further confirmed by exogenous CPPU treatments in pear fruitlets.To investigate the underlying mechanism,the cytokinins-responded factor,PbRR1,was further focused on.The results of Yeast-one-hybrid assay suggested that PbRR1 can bind to the promoter sequence of PbGIF1.The transcriptional activation of PbRR1 on PbGIF1 was also confirmed by Dual-Luciferase assays.Taken together,the results showed that cytokinins control pear fruit development via the transcriptional activation of PbGIF1 by PbRR1.展开更多
Different temperatures and PEF packing treatments were carried out on postharvest Huanghua pear fruit to investigate their effects on fruit storability and the regulatory mechanism. LOX activity, O2- content, AOS acti...Different temperatures and PEF packing treatments were carried out on postharvest Huanghua pear fruit to investigate their effects on fruit storability and the regulatory mechanism. LOX activity, O2- content, AOS activity, ACC synthase activity, ACC content, ACC oxidase activity and ethylene production changed with peaks in the ripening fruit at 20℃ and were inhibited by cold storage, incidence of fruit woolness and fruit decay were lightened as well. Low temperature combined with PEF packing (PEF1 and PEF2) treatments could further improve the fruit storability, maintain preferable quality. There was no significant difference between PEF1 and PEF2 both during cold storage at 1℃ and shelf life at 20℃. The recommended storage period of Huanghua fruit was two months at It and could be extended one month longer with PEF packing treatments.展开更多
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberel...Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberellins(GAs)play crucial roles in plant growth,development,and responses to drought stress.Previous studies have shown significant reductions of GA levels in plants under drought stress;however,our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.Here,we show that drought stress can impair the accumulation of bioactive GAs(BGAs),and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.This gene was significantly induced by drought stress and abscisic acid(ABA)treatment,but was suppressed by GA_(3)treatment.PbrGA2ox1-overexpressing transgenic tobacco plants(Nicotiana benthamiana)exhibited enhanced tolerance to dehydration and drought stresses,whereas knock-down of PbrGA2ox1 in pear(Pyrus betulaefolia)by virus-induced gene silencing led to elevated drought sensitivity.Transgenic plants were hypersensitive to ABA,and had a lower BGAs content,enhanced reactive oxygen species(ROS)scavenging ability,and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.However,the opposite effects were observed with PbrGA2ox1 silencing in pear.Moreover,exogenous GA_(3)treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling,resulting in the compromised drought tolerance of pear.In summary,our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress,providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.展开更多
基金supported by the National Natural Science Foundation of China(32272654)the Natural Science Foundation of Hebei Province China(C2023204016)+2 种基金the Hebei Province Introduced Overseas-Scholar Fund China(C20220361)the S&T Program of Hebei China(20326330D)the Hebei Province Outstanding Youth Fund China(2016,2019)。
文摘Pyrus pyrifolia Nakai‘Whangkeumbae'is a sand pear fruit with excellent nutritional quality and taste.However,the industrial development of pear fruit is significantly limited by its short shelf life.Salicylic acid(SA),a well-known phytohormone,can delay fruit senescence and improve shelf life.However,the mechanism by which SA regulates CONSTANS-LIKE genes(COLs)during fruit senescence and the role of COL genes in mediating fruit senescence in sand pear are poorly understood.In this study,22 COL genes were identified in sand pear,including four COLs(Pp COL8,Pp COL9a,Pp COL9b,and Pp COL14)identified via transcriptome analysis and 18 COLs through genome-wide analysis.These COL genes were divided into three subgroups according to the structural domains of the COL protein.Pp COL8,with two B-box motifs and one CCT domain,belonged to the first subgroup.In contrast,the other three Pp COLs,Pp COL9a,Pp COL9b,and Pp COL14,with similar conserved protein domains and gene structures,were assigned to the third subgroup.The four COLs showed different expression patterns in pear tissues and were preferentially expressed at the early stage of fruit development.Moreover,the expression of Pp COL8 was inhibited by exogenous SA treatment,while SA up-regulated the expression of Pp COL9a and Pp COL9b.Interestingly,Pp COL8 interacts with Pp MADS,a MADS-box protein preferentially expressed in fruit,and SA up-regulated its expression.While the production of ethylene and the content of malondialdehyde(MDA)were increased in Pp COL8-overexpression sand pear fruit,the antioxidant enzyme(POD and SOD)activity and the expression of Pp POD1 and Pp SOD1 in the sand pear fruits were down-regulated,which showed that Pp COL8 promoted sand pear fruit senescence.In contrast,the corresponding changes were the opposite in Pp MADS-overexpression sand pear fruits,suggesting that Pp MADS delayed sand pear fruit senescence.The co-transformation of Pp COL8 and Pp MADS also delayed sand pear fruit senescence.The results of this study revealed that Pp COL8 can play a key role in pear fruit senescence by interacting with Pp MADS through the SA signaling pathway.
基金supported by grants from the Agriculture Science and Technology of Shandong Province (Grant No.2019YQ015)the Agricultural Variety Improvement Project of Shandong Province (Grant No.2022LZGC011)the earmarked fund for CARS (Grant No.CARS-28-07)。
文摘The lack of a suitable rootstock to control scion growth has limited the development of high-density plantations in pear production, which is partly attributed to poor understanding of the dwarfing mechanism. In the present study, the rootstock of the dwarf-type pear (Pyrus betulaefolia)PY-9’ was identified and used as the material for anatomical analysis.PY-9’ grew to half the tree height of the normal cultivar Zhengdu’, along with fewer internodes and shorter length. Significant differences in growth rate betweenPY-9’ andZhengdu’ were detected at approximately 30 days after full bloom, which corresponded with the time of the greatest difference in water potential between the dwarf and normal cultivar.PY-9’ showed a higher photosynthetic rate thanZhengdu’. Anatomical analysis showed thatPY-9’ had higher area ratios of both phloem and xylem and more developed vascular tissues thanZhengdu’. The three-dimensional reconstructed skeleton of the xylem from X-ray computed tomography scanning revealed greater intervessel connectivity inZhengdu’ than inPY-9’, which could contribute to the more vigorous growth ofZhengdu’. This study thus provides the first comparison of the microstructural properties of xylem elements between a dwarfing-type and vigorous-type pear rootstock, providing new insights into the dwarfing mechanism in pear and facilitating breeding of dwarf pear rootstocks to increase crop productivity.
基金supported by the National Natural Science Foundation of China (Grant No.31901989)Natural Science Foundation of Jiangsu Province (Grant No.BK20190534)+1 种基金China Postdoctoral Science Foundation (Grant No.2021T140332)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0584)。
文摘The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied by the degradation of damaged substances in cells and the recycling of nutrients. Autophagy is one of the mechanisms through which plants respond to environmental stress and plays an important role in plant development and stress resistance. Functional studies of autophagy-related genes (ATGs) have been performed on a variety of plant species, but little information is available on the ATG family in pear (Pyrus bretschneideri Rehd). Therefore, we analyzed the evolutionary dynamics and performed a genome-wide characterization of the PbrATG gene family. A total of 28 PbrATG members were identified.Phylogenetic analysis showed that PbrATGs were more closely related to ATGs of European pear and apple. Evolutionary analysis revealed that whole-genome duplication (WGD) and dispersed duplication events were the main driving forces of PbrATG family expansion.Expression analysis of different pear tissues showed that all the genes were expressed in different pear tissues, and different PbrATGs are expressed at different times and in different locations. Moreover, all PbrATGs also responded to different abiotic stresses, especially salt and drought stress, which elicited the highest expression levels. Pear seedlings were subsequently infected with Botryosphaeria dothidea (B.dothidea). The results showed that different PbrATGs had different expression patterns at different infection stages. According to the gene expression data, PbrATG1a was selected as a key autophagy gene for further analysis. Silencing of PbrATG1a reduced the resistance of pear to B. dothidea, which resulted in increased lesions, reactive oxygen species (ROS) contents, antioxidant enzyme activity, and gene expression levels in the silenced pear seedlings after B. dothidea inoculation. In this study, a comprehensive bioinformatic analysis of ATGs was conducted, and the functions of PbrATGs in pear development and in response to stress were elucidated, which laid a foundation for further study of the molecular mechanism of autophagy and a new strategy for pear resistance breeding.
基金funded by the National Natural Science Foundation of China(31820103012)the earmarked fund for China Agriculture Research System(CARS-28)the earmarked fund for Jiangsu Agricultural Industry Technology System,China(JATS[2022]454).
文摘As there is a strong interest in red-skinned pears,the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated;however,little is known about the molecular mechanism of anthocyanin regulation in red-fleshed pears due to limited availability of such germplasm,primarily found in European pears(Pyrus communis).In this study,based on transcriptomic analysis in red-fleshed and white-fleshed pears,we identified an ethylene response factor(ERF)from P.communis,PcERF5,of which expression level in fruit flesh was significantly correlated with anthocyanin content.We then verified the function of PcERF5 in regulating anthocyanin accumulation by genetic transformation in both pear skin and apple calli.PcERF5 regulated anthocyanin biosynthesis by different regulatory pathways.On the one hand,PcERF5 can activate the transcription of flavonoid biosynthetic genes(PcDFR,PcANS and PcUFGT)and two key transcription factors encoding genes PcMYB10 and PcMYB114.On the other hand,PcERF5 interacted with PcMYB10 to form the ERF5-MYB10 protein complex that enhanced the transcriptional activation of PcERF5 on its target genes.Our results suggested that PcERF5 functioned as a transcriptional activator in regulating anthocyanin biosynthesis,which provides new insights into the regulatory mechanism of anthocyanin biosynthesis.This new knowledge will provide guidance for molecular breeding of red-fleshed pear.
基金supported by the National Key Research and Development Plan“Research on protection and restoration of typical small populations of wild plants”(Grant No.2016YFC0503106)。
文摘Low temperature is among the most restrictive factors to limit the yield and distribution of pear. Pyrus hopeiensis is a valuable wild resource.PCA showed that P. hopeiensis had strong cold resistance. In this study, the mRNA and metabolome sequencing of P. hopeiensis flower organs exposed to different low temperatures were performed to identify changes of genes and metabolites in response to low-temperature stress. A total of 4 851 differentially expressed genes(DEGs) were identified. Trend analysis showed that these DEGs were significantly enriched in profiles 19, 18, 7, 14, 1, 4 and 11. And the KEGG enrichment analysis showed that the DEGs in profile 18 were significantly enriched in flavone and flavonol biosynthesis. Besides, the expressed trends as well as GO and KEGG functional enrichment analyses of DEGs under cold and freezing stress showed significantly difference. Analyses of flavonoid-related pathways indicated that flavonoid structural genes had undergone significant changes. Correlation analysis showed that b HLH and MYB TFs may affect flavonoid biosynthesis by regulating structural gene expression. And PhMYB308 and PhMYB330 were likely candidate repressors of flavonoid biosynthesis by binding to a specific site in bHLH proteins. In total, 92 differentially accumulated metabolites(DAMs) were identified in P. hopeiensis flowers including 12 flavonoids. WGCNA results showed that coral 1, pink and brown 4 modules were closely associated with flavonoids and 11 MYBs and 15 bHLHs among the three modules may activate or inhibit the expression of 23 structural genes of flavonoid biosynthesis. Taken together, the results of this study provided a theoretical basis for further exploration of the molecular mechanisms of flavonoid biosynthesis and cold resistance of P. hopeiensis flower organs and our findings laid a foundation for further molecular breeding in cold-resistant pear varieties.
基金supported in part by Natural Science Foundation of JiangxiAgricultural University, China (1878).
文摘The identification of self-incompatibility genotype (S-genotype) will be useful for selection of pollinizers and design of crossing in cultivar improvement of sand pear. This paper reported the identification of self-incompatibility genotypes of seven Chinese and two Japanese sand pear cultivars using PCR-RFLP analysis and S-RNase sequencing. The Sgenotypes of these cultivars were determined as follows: Huali 1 S1S3, Shounan S1S3, Xizilti S1S4, Qingxiang S3S7, Sanhua S2S7, Huangmi (Imamuranatsu) S1S6, Huali 2 S3S4, Baozhuli S7S33, Cangxixueli S5S15. S-RNase alleles (S1 to S9) in sand pear could be identified effectively by PCR-RFLP analysis.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-2917)Hubei Innovation Center of Agricultural Science and Technology(2011-620-005003)
文摘Pear is a popular and commercially important fresh fruit, and its texture is related to the presence of sclereid formatted by parenchyma cell with lignification in vascular plants. Previous studies have demonstrated that content of lignin may be regulated by cinnamoyl CoA reductase(CCR) in various plants. However, the function of CCR in pears remains very limited. In the present study, we isolated a cDNA encoding CCR(PpCCR, GenBank accession No. KF999958) and its promoter(proPpCCR) from Whangkeumbae pear to investigate the function of CCR in lignin biosynthesis. PpCCR-GFP expressed in rice mesophyll protoplast demonstrated that PpCCR-GFP was localized in the cytoplasm, indicating that CCR may function in cytoplasm without localization signals. In transgenic plants carrying PpCCR, we observed higher lignin content compared with that in wild type plants, further suggesting that PpCCR can affect the lignin contents through regulating lignin biosynthesis in Arabidopsis thaliana. More studies in other plants are needed to confirm our conclusion.
基金supported by the China Agriculture Research System of MOF and MARA(CARS-29-01)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP2016-RIP-01)。
文摘Germplasm resources are an important basis for genetic breeding and analysis of complex traits,and research on genetic diversity is conducive to the exploration and creation of new types of germplasm.In this study,the distribution frequency,coefficient of variation,Shannon-Wiener index,and variance and cluster analyses were used to analyze the diversity and trait differences of 39 fruit phenotypic traits from 570 pear accessions,which included 456 pear accessions from 11 species and 114 interspecific hybrid cultivars that had been stored in the National Germplasm Repository of Apple and Pear(Xingcheng,China).The comprehensive evaluation indices were screened by correlation,principal component and regression analyses.A total of 132 variant types were detected in 28 categorical traits of pear germplasm fruit,which indicate a rich diversity.The diversity indices in decreasing order were:fruit shape(1.949),attitude of calyx(1.908),flesh texture type(1.700),persistency of calyx(1.681),russet location(1.658),relief of area around eye basin(1.644),flavor(1.610)and ground color(1.592).The coefficient of variation of titratable acidity in the 11 numerical traits of pear germplasm fruit was as high as 128.43%,which could more effectively reflect the differences between pear accessions.The phenotypic differentiation coefficient V_(st)(66.4%)among the five cultivated pear species,including Pyrus bretschneideri(White Pear),P.pyrifolia(Sand Pear),P.ussuriensis(Ussurian Pear),P.sinkiangensis(Xinjiang Pear),and P.communis(European Pear),was higher than the within population phenotypic differentiation coefficient V_(st)(33.6%).The variation among populations was the main source of variation in pear fruit traits.A hierarchical cluster analysis divided the 389 accessions of six cultivated pear species,including P.pashia(Himalayan Pear),into six categories.There were certain characteristics within the populations,and the differences between populations were not completely clustered by region.For example,Sand Pear cultivars from Japan and the Korean Peninsula clustered together with those from China.Most of the White Pear cultivars clustered with the Sand Pear,and a few clustered with the Ussurian Pear cultivars.The Ussurian Pear and European Pear cultivars clustered separately.The Xinjiang Pear and Himalayan Pear did not cluster together,and neither did the cultivars.Seventeen traits,three describing fruit weight and edible rate(fruit diameter,fruit length and fruit core size),five describing outer quality and morphological characteristics(over color,amount of russeting,dot obviousness,fruit shape,and stalk length),and nine describing inner quality(flesh color,juiciness of flesh,aroma,flavor,flesh texture,flesh texture type,soluble solid contents,titratable acidity,and eating quality)were selected from the 39 traits by principal component and stepwise regression analyses.These 17 traits could reflect 99.3%of the total variation and can be used as a comprehensive evaluation index for pear germplasm resources.
基金the National Key Research and Development Program(Grant No.2018YFD1000200)the Earmarked Fund for Jiangsu Agricultural Industry Technology System(Grant No.JATS[2019]420)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘Stone cells have been described to substantially influence pear fruit quality,as lignin and cellulose are the main components of stone cells.However,there are limited studies on the relationship between the variation and molecular basis of stone cells,lignin and cellulose content among different pear varieties.Here,to reveal the variation of stone cell content within different cultivated species,we collected 236 germplasms of sand pear(Pyrus pyrifolia)at 50 days after flower blooming(DAFB),the key stage of stone cell formation.In our results,we measured the content of stone cells,lignin and cellulose and found that these contents ranged from2.82%to 29.00%,8.84%to 55.30%and 11.52%to 30.55%,respectively.Further analysis showed that the variation coefficient of stone cell,lignin and cellulose content was 39.10%,28.03%and 16.71%,respectively.Additionally,a significant correlation between stone cell,lignin and cellulose content were detected,and the correlation coefficient between the contents of stone cell and lignin(0.912)was higher than between the contents of stone cell and cellulose(0.796).Moreover,the average lignin content(29.73%)was higher than the average cellulose content(18.03%)in stone cells in pear fruits,indicating that lignin is the main component of stone cell in pears.Finally,on the basic of the transcriptome data,we identified 10 transcription factors belonging to bHLH,ERF,MYB,and NAC transcript families,which might be involved in lignin formation in stone cells.qRT-PCR experiments verified coincident trends between expression of candidate genes and stone cell content.This research laid foundation for future studies on genetic variation of stone cells in pear fruits and provided important gene resources for stone cell regulation.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000107)National Natural Science Foundation of China(Grant No.32001983)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190896)。
文摘Pears carry a gametophytic self-incompatibility(SI)system.In this system,S-RNase is the SI pistil determinant,and S-locus F-box brothers(SFBBs)are candidate pollen determinants.However,compared with apple,fewer SFBB genes were identified from pear,possibly caused by the lack of economic and effective methods.Here,we used transcriptome sequencing on‘Yali’(Pyrus bretschneideri)to obtain sequence fragments of SFBB genes and then used polymerase chain reaction(PCR)to amplify the whole sequence of SFBB genes.Twenty-seven SFBB genes,including22 full-length and five nonfull-length SFBB genes,were identified in‘Yali’(P.bretschneideri).SFBBs linkage analysis by PCR-enzyme-linked immunoassay(ELISA)showed that 12 SFBB genes belong to the S21 locus,and 15 SFBB genes belong to the S34 locus.Phylogenetic analysis showed that SFBB genes from Pyrus were divided into 26 types,more than the original eight types.The intrahaplotypic divergence of SFBBs is high and comparable to the allelic diversity of S-RNase,which is consistent with a nonself-recognition SI system.In addition,the expression level of PbrSFBBs in‘Jinzhui’,the only known haploid pollen of a self-compatible mutant,was mostly approximately two times higher than in‘Yali’,which may be the reason for the self-compatible mutant.
基金supported by the National Natural Science Foundation of China (31301761)the China Scholarship Council (201608130248)the Second Round of the Youth Top-Notch Talent Support Programs of Hebei Province, China (2019)。
文摘Salicylic acid(SA) plays a pivotal role in delaying fruit ripening and senescence. However, little is known about its underlying mechanism of action. In this study, RNA sequencing was conducted to analyze and compare the transcriptome profiles of SA-treated and control pear fruits. We found a total of 159 and 419 genes differentially expressed between the SA-treated and control pear fruits after 12 and 24 h of treatment, respectively. Among these differentially expressed genes(DEGs), 125 genes were continuously differentially expressed at both treatment times, and they were identified as candidate genes that might be associated with SA-regulated fruit ripening and senescence. Bioinformatics analysis results showed that 125 DEGs were mainly associated with plant hormone biosynthesis and metabolism, cell wall metabolism and modification, antioxidant systems, and senescence-associated transcription factors. Additionally, the expression of several candidate DEGs in ripening and senescent pear fruits after SA treatments were further validated by quantitative real-time PCR(qRT-PCR). This study provides valuable information and enhances the understanding of the comprehensive mechanisms of SA-meditated pear fruit ripening and senescence.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFD1200503)Jiangsu Agriculture Science and Technology Innovation Fund[Grant No.CX(22)3046]+2 种基金the National Science Foundation of China(Grant No.32072538)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been identified in other species,such as Arabidopsis,Oryza sativa,and grapevine,few reports on pear ATL gene families have been reported.In this study,92 PbrATL genes were identified and analyzed from the Pyrus breschneideri genome.Motif analysis and phylogenetic tree generation divided them into nine subgroups,and chromosome localization analysis showed that the 92 PbrATL genes were distributed in 16 of 17 pear chromosomes.Transcriptome data and quantitative real-time polymerase chain reaction(qRT-PCR)experiments demonstrated that PbrATL18,PbrATL41,and PbrATL88 were involved in both pear drought resistance and Colletotrichum fructicola infection.In addition,Arabidopsis thaliana overexpressing PbrATL18 showed greater resistance to drought stress than the wild type(WT),and PbrATL18-silenced pear seedlings showed greater sensitivity to drought and C.fructicola infection than the controls.PbrATL18 regulated plant resistance by regulating chitinase(CHI),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO),catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD)activities.This study provided a reference for further exploring the functions of the PbrATL gene in drought resistance and C.fructicola infection.
基金This research was supported by the National Natural Science Foundation of China(31701865)the earmarked fund for the China Agriculture Research System(CARS-28)the Liaoning Provincial Natural Science Foundation of China(2019-MS-276).
文摘Anthocyanins are important components in the peel of red pears and contribute to the appearance of the fruit.Melatonin application is known to affect anthocyanin biosynthesis,but the effect of preharvest melatonin application on fruit coloration remains largely unknown.The objective of this study was to determine the effects of preharvest melatonin application on pigmentation,phenolic compounds,and the expression of related genes in Nanhong pear(Pyrus ussuriensis).The applications were performed during the pre-color-change period by spraying 50 or 200μmol L^(-1)of melatonin on fruits.We found that treatment with melatonin had a significant effect on color development.The concentrations of anthocyanins and flavonols were enhanced by melatonin treatment,whereas hydroxycinnamate and flavanol concentrations were reduced.Quantitative real-time PCR analyses indicated that the transcription levels for most anthocyanin biosynthetic genes and anthocyanin-related transcription factors were induced by melatonin.Melatonin application also stimulated the expression of melatonin biosynthesis-related genes and consequently caused an increase in endogenous melatonin concentration.These results provide insights into melatonin-induced fruit coloration and will facilitate the application of exogenous melatonin in agriculture.
基金supported by the National Key Research and Development Program (Grant No.2022YFD1200503)Jiangsu Agricultural Science and Technology Innovation Fund [Grant No.CX(22)3043]+1 种基金the Earmarked Fund for China Agriculture Research System (Grant No.CARS-28)the Earmarked Fund for Jiangsu Agricultural Industry Technology System (Grant No.JATS [2022]454)。
文摘Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the training population (TP) size on pear GS for improving its performance and reducing cost. We evaluated GS under two scenarios:(1) five-fold cross-validation in an interspecific pear family;(2) independent validation. Based on the cross-validation scheme, the prediction accuracy (PA) of eight fruit traits varied between 0.33 (fruit core vertical diameter)and 0.65 (stone cell content). Except for single fruit weight, a slightly better prediction accuracy (PA) was observed for the five parametrical methods compared with the two non-parametrical methods. In our TP of 310 individuals, 2 000 single nucleotide polymorphism (SNP) markers were sufficient to make reasonably accurate predictions. PAs for different traits increased by 18.21%-46.98%when the TP size increased from 50to 100, but the increment was smaller (-4.13%-33.91%) when the TP size increased from 200 to 250. For independent validation, the PAs ranged from 0.11 to 0.45 using rrBLUP method. In summary, our results showed that the TP size and SNP numbers had a greater impact on the PA than prediction methods. Furthermore, relatedness among the training and validation sets, and the complexity of traits should be considered when designing a TP to predict the test panel.
基金supported by the China Agriculture Research System (Grant No.CARS-28-14)。
文摘Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.
基金supported by the National Natural Science Foundation of China(Grant No.32102364)the General Program of Shandong Natural Science Foundation(Grant No.ZR2022MC064)+3 种基金the Shanxi Province Postdoctoral Research Activity Fund(Grant No.K462101001)the Doctoral Research Initiation Fund of Shanxi Datong University(Grant No.2023-B-15)the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.2023CYJSTX07)the Shanxi Province Excellent Doctoral Work Award Project(Grant No.606-02010609)。
文摘The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we de novo assembled and annotated the genomes of the maternal(PsbM)and paternal(PsbF)lines of the hybrid‘Yuluxiang'pear and constructed the pear pangenome of 1.15 Gb by combining these two genomes with five previously published pear genomes representing cultivated and wild germplasm.Using the constructed pangenome,we identified 21224 gene PAVs(Presence-absence variation)and 1158812 SNPs(Single Nucleotide Polymorphism)in the non-reference genome that were absent in the PsbM reference genome.Compared with SNP markers,PAV-based analysis provides additional insights into the pear population structure.In addition,some genes associated with pear fruit quality traits have differential occurrence frequencies and differential gene expression between Asian and European populations.Moreover,our analysis of the pear pangenome revealed a mutated SNP and an insertion in the promoter region of the gene PsbMGH3.1 potentially enhance sepal shedding in‘Xuehuali'which is vital for pear quality.PsbMGH3.1 may play a role in the IAA pathway,contributing to a distinct low-auxin phenotype observed in plants by heterologously overexpressing this gene.This research helps capture the genetic diversity of pear populations and provides genomic resources for accelerating breeding.
基金supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-RIP)the earmarked fund for the China Agriculture Research System(CARS-28)the Natural Science Foundation of Liaoning Province,China(2021-MS-036)。
文摘During storage at 20℃,specific pear cultivars may exhibit a greasy texture and decline in quality due to fruit senescence.Among these varieties,‘Yuluxiang’is particularly susceptible to peel greasiness,resulting in significant economic losses.Therefore,there is an urgent need for a preservative that can effectively inhibit the development of greasiness.Previous studies have demonstrated the efficacy of 1-methylcyclopropene(1-MCP)in extending the storage period of fruits.We hypothesize that it may also influence the occurrence of postharvest peel greasiness in the‘Yuluxiang’pears.In this study,we treated‘Yuluxiang’pears with 1-MCP.We stored them at 20℃while analyzing the composition and morphology of the surface waxes,recording enzyme activities related to wax synthesis,and measuring indicators associated with fruit storage quality and physiological characteristics.The results demonstrate that prolonged storage at 20℃leads to a rapid increase in skin greasiness,consistent with the observed elevations in L^(*),greasiness score,and the content of total wax and greasy wax components.Moreover,there were indications that cuticular waxes underwent melting,resulting in the formation of an amorphous structure.In comparison to controls,the application of 1-MCP significantly inhibited increments in L^(*) values as well as grease scores while also reducing accumulation rates for oily waxes throughout most stages over its shelf period,additionally delaying transitions from flaky-wax structures towards their amorphous counterparts.During the initial 7 d of storage,several enzymes involved in the biosynthesis and metabolism of greasy wax components,including lipoxygenase(LOX),phospholipase D(PLD),andβ-ketoacyl-CoA synthase(KCS),exhibited an increase followed by a subsequent decline.The activity of LOX during early shelf life(0–7 d)and the KCS activity during middle to late shelf life(14–21 d)were significantly suppressed by 1-MCP.Additionally,1-MCP effectively maintained firmness,total soluble solid(TSS)and titratable acid(TA)contents,peroxidase(POD),and phenylalanine ammonia-lyase(PAL)activities while inhibiting vitamin C degradation and weight loss.Furthermore,it restrained polyphenol oxidase(PPO)activity,ethylene production,and respiration rate increase.These findings demonstrate that 1-MCP not only delays the onset of peel greasiness but also preserves the overall storage quality of‘Yuluxiang’pear at a temperature of 20℃.This study presents a novel approach for developing new preservatives to inhibit pear fruit peel greasiness and provides a theoretical foundation for further research on pear fruit preservation.
基金supported by the China Agriculture Research System of MOF and MARA。
文摘As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear.According to transcriptome data,we identified PbGIF1was highly expressed during fruit development in cytokinins induced parthenocarpy pear.In the present study,the biofunction of PbGIF1 was initially verified.Overexpression of PbGIF1 promoted fruit size of transgenic tomato.The size of flesh fruit was not affected by cell expansion but the cell proliferation was promoted by overexpressing Pb GIF1.The accelerated cell proliferation process was also observed in PbGIF1-overexpressed transgenic pear fruit calli.The transcriptional regulation of cytokinins on PbGIF1 was further confirmed by exogenous CPPU treatments in pear fruitlets.To investigate the underlying mechanism,the cytokinins-responded factor,PbRR1,was further focused on.The results of Yeast-one-hybrid assay suggested that PbRR1 can bind to the promoter sequence of PbGIF1.The transcriptional activation of PbRR1 on PbGIF1 was also confirmed by Dual-Luciferase assays.Taken together,the results showed that cytokinins control pear fruit development via the transcriptional activation of PbGIF1 by PbRR1.
基金the National Natural Science Foundation of China(30270917) the Key Project of Zhejiang Provincial Natural Science Foundation(ZD0004)
文摘Different temperatures and PEF packing treatments were carried out on postharvest Huanghua pear fruit to investigate their effects on fruit storability and the regulatory mechanism. LOX activity, O2- content, AOS activity, ACC synthase activity, ACC content, ACC oxidase activity and ethylene production changed with peaks in the ripening fruit at 20℃ and were inhibited by cold storage, incidence of fruit woolness and fruit decay were lightened as well. Low temperature combined with PEF packing (PEF1 and PEF2) treatments could further improve the fruit storability, maintain preferable quality. There was no significant difference between PEF1 and PEF2 both during cold storage at 1℃ and shelf life at 20℃. The recommended storage period of Huanghua fruit was two months at It and could be extended one month longer with PEF packing treatments.
基金supported by grants from the China Agriculture Research System(CARS-28-14)the Technical System of Fruit Industry in Anhui Province,China(AHCYTX-10)the Scientific Research Projects for Postgraduates of Anhui Universities,China(YJS20210207).
文摘Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberellins(GAs)play crucial roles in plant growth,development,and responses to drought stress.Previous studies have shown significant reductions of GA levels in plants under drought stress;however,our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.Here,we show that drought stress can impair the accumulation of bioactive GAs(BGAs),and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.This gene was significantly induced by drought stress and abscisic acid(ABA)treatment,but was suppressed by GA_(3)treatment.PbrGA2ox1-overexpressing transgenic tobacco plants(Nicotiana benthamiana)exhibited enhanced tolerance to dehydration and drought stresses,whereas knock-down of PbrGA2ox1 in pear(Pyrus betulaefolia)by virus-induced gene silencing led to elevated drought sensitivity.Transgenic plants were hypersensitive to ABA,and had a lower BGAs content,enhanced reactive oxygen species(ROS)scavenging ability,and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.However,the opposite effects were observed with PbrGA2ox1 silencing in pear.Moreover,exogenous GA_(3)treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling,resulting in the compromised drought tolerance of pear.In summary,our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress,providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.