Pectin contributes greatly to cell wall phosphorus(P)remobilization.However,it is currently unclear whether the methylesterification degree of the pectin,which is related to the activity of pectin methylesterases(PMEs...Pectin contributes greatly to cell wall phosphorus(P)remobilization.However,it is currently unclear whether the methylesterification degree of the pectin,which is related to the activity of pectin methylesterases(PMEs),is also involved in this process.Here,we demonstrated that elevated PME activity can facilitate the remobilization of P deposited in the cell wall.P-deficient conditions resulted in the reduction of root cell wall P content.This reduction was more pronounced in Nipponbare than in Kasalath,in company with a significant increment of the PME activity,indicating a possible relationship between elevated PME activity and cell wall P remobilization.This hypothesis was supported by in vitro experiments,as pectin with lower methylesterification degree had higher ability to release inorganic P(Pi)from insoluble FePO_(4).Furthermore,among the 35 OsPME members in rice,only the expression of OsPME14 showed a relationship with PME activity.In addition,transgenic rice lines overexpressing OsPME14 had increased PME activity,released more P from the root cell wall,and more resistant to P deficiency.In conclusion,PMEs enhance P remobilization in P-starved rice by increasing PME activity in Nipponbare,which in turn helps to remobilize P from the cell wall,and thus makes more available P.展开更多
In an effort to provide some information relevant to the molecular mechanism of genic male sterility in plants, BcMF3 gene that encodes a pectin methylesterase was isolated from the fertile B line of Chinese cabbage-p...In an effort to provide some information relevant to the molecular mechanism of genic male sterility in plants, BcMF3 gene that encodes a pectin methylesterase was isolated from the fertile B line of Chinese cabbage-pak-choi (Brassica rapa ssp. chinensis, syn. B. campestris ssp. chinensis). In the present paper, a 455-bp antisense cDNA fragment of BcMF3 was introduced to binary vector pB1121, and then was mobilized into Agrobacterium tumefaciens strain LBA4404. The A. tumefaciens harboring the BcMF3 antisense fragment was transformed to Arabidopsis thaliana by floral dip. Scanning electronic microscopy examination demonstrated that 47.8% of BcMF3 antisense pollen grains exhibited abnormal shape, which might lead to decreased germination of pollens, suggesting that the product of BcMF3 gene plays an important role during microsporogenesis. The evidence on burst of 45.7% of BcMF3 antisense pollen tubes in vitro and a majority of BcMF3 antisense pollens restricted within the stigmatic tissue revealed that BcMF3 is involved in aiding the growth of pollen tubes. The results suggest that BcMF3 acts at both stages of microsporogensis and pollen tube growth.展开更多
This study aimed at evaluating the quality of melon Pele de Sapo “Mabel” and Yellow melon “UFERSA-05” minimally processed preserved in different packages. The fruits were harvested at Mossoró-RN and transport...This study aimed at evaluating the quality of melon Pele de Sapo “Mabel” and Yellow melon “UFERSA-05” minimally processed preserved in different packages. The fruits were harvested at Mossoró-RN and transported to Serra Talhada-PE. In the first study, melon fruit Piel de Sapo “Mabel” was selected, washed, weighed, cooled, peeled, cut into cube shape, sanitized in chlorine solution, drained, packaged in rigid polypropylene tray, sealed with polypropylene film or polypropylene rigid cap and kept for 8 days at 8℃. In the second study, fruits of yellow melon “UFERSA-05” and Pele de Sapo “Mabel” were minimally processed and kept in rigid polypropylene tray, sealed with polypropylene film and stored for 8 days at 8℃. There was no significant interaction between packaging (sealed with film and polypropylene cover) and period of conservation, for pH, total titratable acidity (TTA), total soluble solids (TSS) and Loss of fresh mass (LFM) for Melon “Mabel”. While there was significant interaction between types of melon (“UFERSA-05” and “Mabel”) and storage period (0, 2, 4, 6, and 8 days) for pH, TTA and TSS. In sensory evaluation were noticeable changes in appearance, flavor, aroma and flesh firmness, characterized by translucency, alcoholic aroma and softening in “Mabel” melon kept in tray with lid. Melon “UFERSA-05” showed lower pH, total soluble solids, total soluble sugars, PME activity, lack of translucency high flesh firmness compared to “Mabel” melon during storage. The high levels of sugars in melon “Mabel” may be related to the incidence of translucency, which was not observed in “UFERSA-05” melon, with a strong potential to minimal processing.展开更多
Cadmium(Cd)pollution poses a serious threat to plant growth and yield.Nanomaterials have shown great application potential for alleviation of Cd toxicity to plants.In this study,we applied graphitic carbon nitride nan...Cadmium(Cd)pollution poses a serious threat to plant growth and yield.Nanomaterials have shown great application potential for alleviation of Cd toxicity to plants.In this study,we applied graphitic carbon nitride nanosheets(g-C_(3)N_(4)NSs)for alleviation of Cd-toxicity to soybean(Glycine max L.).The g-C_(3)N_(4)NSs supplementation significantly improved plant growth and reduced oxidative damage in the Cd-toxicated soybean seedlings through hydroponic culture.Particularly,the g-C_(3)N_(4)NSs dynamically regulated the root cell wall(RCW)components by increasing pectin content and modifying its demethylation via enhancing pectin methylesterase(PME)activity,therefore greatly enhanced stronger RCW-Cd retention(up to 82.8%)and reduced Cd migration to the shoot.Additionally,the g-C_(3)N_(4)NSs reversed the Cd-induced chlorosis,increased photosynthetic efficiency because of enhancement in F_v/F_mration,Y(Ⅱ)and sugars content.These results provide new insights into the alleviation of Cd toxicity to plants by g-C_(3)N_(4)NSs,and shed light on the application of low-cost and environmental-friendly carbon-based NMs for alleviating heavy metal toxicity to plants.展开更多
Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostabi...Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostability in plants. However, the molecular mechanisms controlling this trait remain unknown. Here, we report that rice Diurnal Flower Opening Time 1 (DFOT1) modulates pectin methylesterase (PME) activity to regulate pectin methylesterification levels of the lodicule cell walls, which affect lodicule swelling to control diurnal flower-opening time. DFOT1 is specifically expressed in the lodicules, and its expression gradually increases with the approach to flowering but decreases with flowering. Importantly, a knockout of DFOT1 showed earlier diurnal flower opening. We demonstrate that DFOT1 interacts directly with multiple PMEs to promote their activity. Knockout of PME40 also resulted in early diurnal flower opening, whereas overexpression of PME42 delayed diurnal flower opening. Lower PME activity was observed to be associated with higher levels of pectin methylesterification and the softening of cell walls in lodicules, which contribute to the absorption of water by lodicules and cause them to swell, thus promoting early diurnal flower opening. Higher PME activity had the opposite effect. Collectively, our work uncovers a molecular mechanism underlying the regulation of diurnal flower-opening time in rice, which would help reduce the costs of hybrid breeding and improve the heat tolerance of flowering plants by avoiding higher temperatures at anthesis.展开更多
Segment drying is a severe physiological disorder of citrus fruit,and vesicles become granulated or collapsed.Aside from the hypothesis that alteration of cell wall metabolism is the main factor of citrus granulation,...Segment drying is a severe physiological disorder of citrus fruit,and vesicles become granulated or collapsed.Aside from the hypothesis that alteration of cell wall metabolism is the main factor of citrus granulation,little is known about vesicle collapse.This study aimed to elucidate the changes in pectin metabolism during vesicle collapse in blood orange.Vesicle collapse was characterized by decreased nutrients and increased chelate-and sodium carbonate-soluble pectin and calcium content.The nanostructure of chelate-soluble pectin became complex and developed multi-branching upon collapse.The activity of pectin methylesterase increased,while that of polygalacturonase and pectate lyase decreased upon collapse.Genome-wide transcriptional analysis revealed an increasing pattern of genes encoding pectin methylesterase and other enzymes involved in pectin synthesis and demethylesterification upon collapse.Drying vesicles were characterized by increased abscisic acid content and relevant gene expression.In conclusion,we discovered alteration in pectin metabolism underlying citrus vesicle collapse,mainly promoting pectin demethylesterification,remodeling pectin structures,and further inhibiting pectin degradation,which was hypothesized to be a main factor for citrus collapse.This is the first study to disclose the potential intrinsic mechanism underlying vesicle collapse in orange fruit.展开更多
基金This study was supported by the Foundation for Distinguished Young Scholars of Jiangsu Province,China(Grant No.BK20190050)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2015250)+2 种基金the‘Strategic Priority Research Program’of the Chinese Academy of Sciences(Grant No.XDB15030300)National Science Foundation of China(Grant No.31501825)the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources in China in 2020(Grant No.SKLCUSA-b201909).
文摘Pectin contributes greatly to cell wall phosphorus(P)remobilization.However,it is currently unclear whether the methylesterification degree of the pectin,which is related to the activity of pectin methylesterases(PMEs),is also involved in this process.Here,we demonstrated that elevated PME activity can facilitate the remobilization of P deposited in the cell wall.P-deficient conditions resulted in the reduction of root cell wall P content.This reduction was more pronounced in Nipponbare than in Kasalath,in company with a significant increment of the PME activity,indicating a possible relationship between elevated PME activity and cell wall P remobilization.This hypothesis was supported by in vitro experiments,as pectin with lower methylesterification degree had higher ability to release inorganic P(Pi)from insoluble FePO_(4).Furthermore,among the 35 OsPME members in rice,only the expression of OsPME14 showed a relationship with PME activity.In addition,transgenic rice lines overexpressing OsPME14 had increased PME activity,released more P from the root cell wall,and more resistant to P deficiency.In conclusion,PMEs enhance P remobilization in P-starved rice by increasing PME activity in Nipponbare,which in turn helps to remobilize P from the cell wall,and thus makes more available P.
基金the National Natural Science Foundation of China (30370975) the Key Scitechnology Project of Zhejiang Province (2005C 12019- 02) the Natural Science Foundation of Zhejiang Province, China (Y304180).
文摘In an effort to provide some information relevant to the molecular mechanism of genic male sterility in plants, BcMF3 gene that encodes a pectin methylesterase was isolated from the fertile B line of Chinese cabbage-pak-choi (Brassica rapa ssp. chinensis, syn. B. campestris ssp. chinensis). In the present paper, a 455-bp antisense cDNA fragment of BcMF3 was introduced to binary vector pB1121, and then was mobilized into Agrobacterium tumefaciens strain LBA4404. The A. tumefaciens harboring the BcMF3 antisense fragment was transformed to Arabidopsis thaliana by floral dip. Scanning electronic microscopy examination demonstrated that 47.8% of BcMF3 antisense pollen grains exhibited abnormal shape, which might lead to decreased germination of pollens, suggesting that the product of BcMF3 gene plays an important role during microsporogenesis. The evidence on burst of 45.7% of BcMF3 antisense pollen tubes in vitro and a majority of BcMF3 antisense pollens restricted within the stigmatic tissue revealed that BcMF3 is involved in aiding the growth of pollen tubes. The results suggest that BcMF3 acts at both stages of microsporogensis and pollen tube growth.
基金The authors thank the Universidade Federal Rural do Pernambuco,the Universidade Federal Rural do Semiárido,CNPq,FACEPE and CAPES for the financial support.
文摘This study aimed at evaluating the quality of melon Pele de Sapo “Mabel” and Yellow melon “UFERSA-05” minimally processed preserved in different packages. The fruits were harvested at Mossoró-RN and transported to Serra Talhada-PE. In the first study, melon fruit Piel de Sapo “Mabel” was selected, washed, weighed, cooled, peeled, cut into cube shape, sanitized in chlorine solution, drained, packaged in rigid polypropylene tray, sealed with polypropylene film or polypropylene rigid cap and kept for 8 days at 8℃. In the second study, fruits of yellow melon “UFERSA-05” and Pele de Sapo “Mabel” were minimally processed and kept in rigid polypropylene tray, sealed with polypropylene film and stored for 8 days at 8℃. There was no significant interaction between packaging (sealed with film and polypropylene cover) and period of conservation, for pH, total titratable acidity (TTA), total soluble solids (TSS) and Loss of fresh mass (LFM) for Melon “Mabel”. While there was significant interaction between types of melon (“UFERSA-05” and “Mabel”) and storage period (0, 2, 4, 6, and 8 days) for pH, TTA and TSS. In sensory evaluation were noticeable changes in appearance, flavor, aroma and flesh firmness, characterized by translucency, alcoholic aroma and softening in “Mabel” melon kept in tray with lid. Melon “UFERSA-05” showed lower pH, total soluble solids, total soluble sugars, PME activity, lack of translucency high flesh firmness compared to “Mabel” melon during storage. The high levels of sugars in melon “Mabel” may be related to the incidence of translucency, which was not observed in “UFERSA-05” melon, with a strong potential to minimal processing.
基金financial support from the National Natural Science Foundation of China(Nos.30800705,31101599)the Natural Science Foundation of Zhejiang Provincial(Nos.LY18C150007,LY15C150004)+1 种基金Key Research and Development Projects of Social Development of Jinhua Science and Technology Program(No.2021C22750)the Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition,China。
文摘Cadmium(Cd)pollution poses a serious threat to plant growth and yield.Nanomaterials have shown great application potential for alleviation of Cd toxicity to plants.In this study,we applied graphitic carbon nitride nanosheets(g-C_(3)N_(4)NSs)for alleviation of Cd-toxicity to soybean(Glycine max L.).The g-C_(3)N_(4)NSs supplementation significantly improved plant growth and reduced oxidative damage in the Cd-toxicated soybean seedlings through hydroponic culture.Particularly,the g-C_(3)N_(4)NSs dynamically regulated the root cell wall(RCW)components by increasing pectin content and modifying its demethylation via enhancing pectin methylesterase(PME)activity,therefore greatly enhanced stronger RCW-Cd retention(up to 82.8%)and reduced Cd migration to the shoot.Additionally,the g-C_(3)N_(4)NSs reversed the Cd-induced chlorosis,increased photosynthetic efficiency because of enhancement in F_v/F_mration,Y(Ⅱ)and sugars content.These results provide new insights into the alleviation of Cd toxicity to plants by g-C_(3)N_(4)NSs,and shed light on the application of low-cost and environmental-friendly carbon-based NMs for alleviating heavy metal toxicity to plants.
基金supported by the Major Program of Guangdong Basicand Applied Research(2019B030302006)the National Natural Science Foundation of China(31921004,32172017 and 31871700)the Laboratory of Lingnan Modern Agriculture Project(NZ2021002 and NT2021002)。
文摘Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostability in plants. However, the molecular mechanisms controlling this trait remain unknown. Here, we report that rice Diurnal Flower Opening Time 1 (DFOT1) modulates pectin methylesterase (PME) activity to regulate pectin methylesterification levels of the lodicule cell walls, which affect lodicule swelling to control diurnal flower-opening time. DFOT1 is specifically expressed in the lodicules, and its expression gradually increases with the approach to flowering but decreases with flowering. Importantly, a knockout of DFOT1 showed earlier diurnal flower opening. We demonstrate that DFOT1 interacts directly with multiple PMEs to promote their activity. Knockout of PME40 also resulted in early diurnal flower opening, whereas overexpression of PME42 delayed diurnal flower opening. Lower PME activity was observed to be associated with higher levels of pectin methylesterification and the softening of cell walls in lodicules, which contribute to the absorption of water by lodicules and cause them to swell, thus promoting early diurnal flower opening. Higher PME activity had the opposite effect. Collectively, our work uncovers a molecular mechanism underlying the regulation of diurnal flower-opening time in rice, which would help reduce the costs of hybrid breeding and improve the heat tolerance of flowering plants by avoiding higher temperatures at anthesis.
基金funded by the National Natural Science Foundation of China(No.32172262)the Fundamental Research Funds for the Central Universities(No.XDJK2021F008)Chongqing Graduate Student Research Innovation Project(No.CYS21118),China.
文摘Segment drying is a severe physiological disorder of citrus fruit,and vesicles become granulated or collapsed.Aside from the hypothesis that alteration of cell wall metabolism is the main factor of citrus granulation,little is known about vesicle collapse.This study aimed to elucidate the changes in pectin metabolism during vesicle collapse in blood orange.Vesicle collapse was characterized by decreased nutrients and increased chelate-and sodium carbonate-soluble pectin and calcium content.The nanostructure of chelate-soluble pectin became complex and developed multi-branching upon collapse.The activity of pectin methylesterase increased,while that of polygalacturonase and pectate lyase decreased upon collapse.Genome-wide transcriptional analysis revealed an increasing pattern of genes encoding pectin methylesterase and other enzymes involved in pectin synthesis and demethylesterification upon collapse.Drying vesicles were characterized by increased abscisic acid content and relevant gene expression.In conclusion,we discovered alteration in pectin metabolism underlying citrus vesicle collapse,mainly promoting pectin demethylesterification,remodeling pectin structures,and further inhibiting pectin degradation,which was hypothesized to be a main factor for citrus collapse.This is the first study to disclose the potential intrinsic mechanism underlying vesicle collapse in orange fruit.