This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle...This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle paths in Nanjing, China,were observed with cameras.Then,the field data including vehicle number,velocity characteristics and passing event features were analyzed in detail.Data analysis and fitting reveal that the speed difference has little impact on the passing event number,as does the bicycle ratio.The Gaussian function can better describe the relationship between the passing event number and bicycle volume (density).The valid use level of bicycle path width influences the inflexion of the passing events-density fitting curve.The conclusions can be applied for estimating the passing events in mixed bicycle flows and for choosing a suitable width of separate bicycle path.展开更多
Signalized intersections sometimes involve multistage pedestrian crossings, in which pedestrians cross to one or more islands and then wait there for a signal to continue. When signals are timed without attention to p...Signalized intersections sometimes involve multistage pedestrian crossings, in which pedestrians cross to one or more islands and then wait there for a signal to continue. When signals are timed without attention to pedestrian progression, pedestrian delay at multistage crossings can be very long. This paper addresses two issues. First, pedestrian delay at multistage crossings is rarely evaluated because there are no tools in the industry for that purpose except microsimulation. We present a numerical method for determining crossing delay with any number of stages and with the possibility of multiple WALK intervals per cycle. The same method can be applied to single stage crossings, to diagonal two-stage crossings where pedestrians may have path choice, and bicycle two-stage turns. This method has been implemented in a freely available online tool. Second, we describe several signal timing techniques for improving pedestrian and bicyclist progression, and thus reducing their delay, through multistage crossings. They include reservice for selected crossing phases, left turn overlaps, having pedestrian phases overlap each other, and bidirectional bicycle crossings which create path options for two-stage turns. Examples show the potential for large reductions in pedestrian delay, often with little or no increase in vehicular delay. In one example, the addition of a short pedestrian overlap phase reduced average pedestrian delay at a 3-stage crossing by 82 s while average vehicular delay increased by only 0.5 s.展开更多
Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, ped...Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, pedestrians and bikes (ped/bike) are encountered unsmooth and hazardous crossings when right-turn vehicles encroaching their lanes. Meanwhile, this also causes conflicts between right-turn and through vehicles at the crossing street. To better protect ped/bike at crossings with right-turn vehicles, this paper proposes a concept of “right-turn vehicle box” (RTVB) as a supplemental treatment within right-turn lanes. Sight distance, geometric conditions, and behaviors of vehicles and ped/bike are key factors to consider so as to set up the criteria and to design the suitable treatment. A case study was conducted at an intersection pair in Houston, USA to shape the idea of RTVB, together with driving simulator tests under relevant scenarios. The preliminary crosscheck examination shows that the right-turn vehicle box could possibly provide ped/ bike with smoother and safer crossings. In the interim, the safety and efficiency of right-turn operations were also improved. To further validate the effects, implementation studies should be conducted before the RTVB can make its debut in practice. Future works will focus on the complete warrants and design details of this treatment. Moreover, the concept of “vehicle box” could also be transplanted to other places where turning movement(s) needs assistance or improvements.展开更多
To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actua...To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actual traffic situation, the concept of borrowed priority, in which the majorroad bicycles borrow the priority of major-road cars to enter the intersections when consecutive headway for major-steam cars is lower than the critical gap for minor-road cars, was addressed. Bicycle capacity at a typical unsignalized intersection is derived by the addition-conflict-flow procedure. The proposes model was validated by the empirical investigation. Numerical results show that bicycle capacity at an intersection is the function of major-road and minor-road car streams. Bicycle capacity increases with increasing major-road cars but decreases with increasing minorroad cars.展开更多
The capacity is impacted badly by pedestrians' violation behavior at signal intersections. In order to quantify the impact,the time-headway and the vehicular speed from start-up to reach the stable saturation flow...The capacity is impacted badly by pedestrians' violation behavior at signal intersections. In order to quantify the impact,the time-headway and the vehicular speed from start-up to reach the stable saturation flow with and without pedestrian traffic are used as the direct measurements. Using the statistical analysis,the timeheadway of saturation flow is mainly affected by the position of pedestrians and the degree of pedestrians 'influence is classified into four levels. Then the speed-time profile for the vehicular acceleration at each level is fitted by Curve Fitting Software. Based on the effect to the time-headway and acceleration time,the model of capacity influenced by pedestrians is established and the influence is quantified, which enriches the fundamental theory of traffic engineering. The result shows that the vehicular capacity can be decreased by 14%at the worst case( level I). The conclusions obtained in this paper are valuable for better management of the signal intersection.展开更多
Pedestrian safety related to public bus transit is an integral part of promoting sustainability especially in the urban setting. This concept has received significant attention within the last decade as transit agenci...Pedestrian safety related to public bus transit is an integral part of promoting sustainability especially in the urban setting. This concept has received significant attention within the last decade as transit agencies strive to make their systems more sustainable and safer at the same time. This study examined pedestrian collisions related to public transit buses in Philadelphia over a three-year study period from 2008 to 2011. The objective is to perform a detailed analysis on crash records, which provides the foundation on statistics for bus-pedestrian collision to allow for future studies in modeling work in this field. Results of this research provided insights on bus-pedestrian collisions in terms of bus maneuver, cause of crash, impact point of bus, and relation to hourly traffic volume. A strong correlation was found between traffic volume and bus-pedestrian collision rate in terms of hours of the day. For any given hour, an increase in collision frequency was found if the traffic volume exceeds a threshold of 5% of its average annual daily traffic. This serves as an indicator of locations that pedestrians are vulnerable at. Analyses were conducted to the fullest extent allowable by the limited dataset. This study presents findings that can be future developed and investigated in future studies. Additionally, countermeasures are recommended in each section that presents a critical area to address.展开更多
Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means...Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous ...To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.展开更多
Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop...Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.展开更多
The Historic Conservation District(HCD) is an important target for urban heritage protection in China. The spatial characteristics of its road system,formed before the appearance of automobile,do not adapt to the car ...The Historic Conservation District(HCD) is an important target for urban heritage protection in China. The spatial characteristics of its road system,formed before the appearance of automobile,do not adapt to the car traffic. In the context of very rapid motorization in Chinese cities,the increase in car traffic brings an inevitable trouble for the protection of HCDs. Road widening and pedestrianization are two popular solutions to this problem in current practices; however,both of them may lead to negative consequences. Inspired by the development of Zone 30 in European cities,this paper firstly cleared up first some misunderstandings of the concept of traffic calming,then taking the inner city of Paris as an example,explained how traffic calming measures can be implemented in HCDs and what effects will be generated. Finally,it discussed the possible application of traffic calming measures in HCDs projects in China and pointed out the specific situations of Chinese cities to which the planners should pay more attention.展开更多
Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians pass...Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.展开更多
This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two...This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two kinds of stairs(one is stairs with 1.5 m in width and the other is stairs with 3 m in width) was estimated by calculating the number of steps on the stairs by a zone which is divided into 30 cm×30 cm.The result shows high density in the middle in the case of narrow stairs but traffic is concentrated on stair inside(pillar side) in stairs with large width.In conclusion,the location for installation of piezoelectric energy harvesting system should be considered differently on stairs width and the number of installation depends on total expected traffic and the expected traffic for a device.展开更多
The safety performance of pedestrian and roadway dimensional-dividing buildings under seismic excitations are analysed. Considering the large displacement of the isolator bearing during earthquake, the gravity force b...The safety performance of pedestrian and roadway dimensional-dividing buildings under seismic excitations are analysed. Considering the large displacement of the isolator bearing during earthquake, the gravity force becomes the dominant forces because of the accumulated permanent deformations in the building, which results in the structure collapse due to lateral instability. A mod- el is established based on an inelastic time history analysis to consider P - z~ effects in multi-degree- of-freedom. A safety criterion of the system is defined. The influence of the stiffness of an independ- ent column is revealed and compared with the influence of the shear force of the independent column to analyze the safety of the structures. Numerical results show that the special structure of pedestrian and roadway dimensional-dividing buildings can reduce the risk of the building in earthquake. The suitable section and height of the independent column greatly affect the building safety.展开更多
Background: Cycling currently comprises only 1% of transport trips in the U.S. despite benefits for air pollution, traffic congestion, and improved public health. Methods: Building upon the Level of Traffic Stress (LT...Background: Cycling currently comprises only 1% of transport trips in the U.S. despite benefits for air pollution, traffic congestion, and improved public health. Methods: Building upon the Level of Traffic Stress (LTS) methodology, we assessed GPS trip data from utilitarian cyclists to understand route preferences and the level of low stress cycling connection between origins and destinations. GPS data were obtained from adult transport cyclists over multiple days. All bikeable road segments in the network were assigned an LTS score. The shortest paths between each origin and destination along bikeable roadways and along low stress (LTS 1 or 2) routes were calculated. Route trajectories were mapped to the LTS network, and the LTS and distances of observed, the shortest and low stress routes were compared. LTS maps and animations were developed to highlight where low stress connections were lacking. Results: There were 1038 unique cycling trips from 87 participants included in the analysis. An exclusively low stress route did not exist for 51% of trips. Low stress routes that were possible were, on average, 74% longer than the shortest possible path and 56% longer than the observed route. Observed routes were longer and lower stress than the shortest possible route. Conclusions: Results indicate that transport cyclists traveled beyond low stress residential areas and that low stress routes with acceptable detour distances were lacking. Cyclists appeared to weigh both route distance and quality and were willing to trade maximum directness for lower stress. GPS data provide additional information to support planning decisions to increase the impact of infrastructure investments on cycling mode share.展开更多
Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and ...Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and various predictor variables based on open source point-of-interest (POI) data which can provide specific land use features and user characteristics. Spatial regression models were developed at Traffic Analysis Zone (TAZ) level using 10,333 pedestrian crash records within the Fifth Ring of Beijing in 2015. Several spatial econometrics approaches were used to examine the spatial autocorrelation in crash count per TAZ, and the spatial heterogeneity was investigated by a geographically weighted regression model. The results showed that spatial error model performed better than other two spatial models and a traditional ordinary least squares model. Specifically, bus stops, hospitals, pharmacies, restaurants, and office buildings had positive impacts on pedestrian crashes, while hotels were negatively associated with the occurrence of pedestrian crashes. In addition, it was proven that there was a significant sign of localization effects for different POIs. Depending on these findings, lots of recommendations and countermeasures can be proposed to better improve the traffic safety for pedestrians.展开更多
Pabna is one the most densely populated town with poor transport infrastructure in Bangladesh. Here huge pedestriangathers in roads and intersections in CBD (Central Business District) area mainly for commercial and...Pabna is one the most densely populated town with poor transport infrastructure in Bangladesh. Here huge pedestriangathers in roads and intersections in CBD (Central Business District) area mainly for commercial and business purposes. At present,pedestrian facilities are one of the greatest challenges in terms of traffic and safety for the urban dwellers. The footpath, zebra rossing,road intersection, walkways, parking and other facilities are the major part of road transportation system as well as pedestrianfacilities and people have to pass walking distance to reach their destinations, before and after use of transport mode. For instance,this paper tries to emphasize the problems of pedestrian facilities and to explore the qualitative level of comfort for the pedestrians ofthree selected intersections namely Traffic More, Indra More and Nimtola More in CBD area of Pabna Municipality through primaryand secondary data. However, about 60% trips are making on foot every day, but the pedestrians are facing many problems whileusing the walkways. Pedestrian crossing behaviors were also observed by using pedestrian volume survey and the survey exploresthat pedestrian crossing rate at these intersections is about 5,000 to 7,000 per hour at a peak period and average 15% to 25% illegalcrossing occurs at those intersections. The physical observation and data from the questionnaire survey also indicate that informalbusiness on the footpath, illegal parking, illegal vendor on walkways, physical obstacle, poor lighting facilities and geometricproblem of the road intersection makes uncomfortable situations for the pedestrian day by day.展开更多
Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger ...Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger volume distribution. Influenced urban realm around station becomes the focus of the optimization of the sustainable urban development. Pedestrian microscopic simulation method establishes the comprehensive dynamic behavior rules in a part of urban space through simulating the behavior law by digital tools, in which the internal demand and motive mechanism of the development and change of urban space fairly well by digital representing and analyzing relevant laws can be explained. After that, the research with the realm as the carrier analyzed the demand of each simulation level and the choice of simulation parameters based on analyzing the walking connection behavior characteristics, and then further established the methodology system of pedestrian microscopic simulation. At last, the research taking the study of influenced urban realm around typical station for sample explored the application method of optimizing of urban space and traffic organization based on AnyLogic platform.展开更多
A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic s...A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic signals.Given this,crash reduction studies often focus on the major signalised intersections.However,there is limited information that links the phasing configuration,degree of saturation and overall cycle time to crashes.While a number of analysis tools are available for assessing the efficiency of intersections,there are very few tools that can assist engineers in assessing the safety effects of intersection upgrades and new intersections.Safety performance functions have been developed to help quantify the safety impact of various traffic signal phasing configurations and level of intersection congestion at low and high-speed traffic signals in New Zealand and Australia.Data from 238 signalised intersection sites in Auckland,Wellington,Christchurch,Hamilton,Dunedin and Melbourne was used to develop crash prediction models for key crash-causing movements at traffic signals.Different variables(road features)effect each crash type.The models indicate that the safety of intersections can be improved by longer cycle times and longer lost inter-green times,especially all-red time,using fully protected right turns and by extending the length of right turn bays.The exception is at intersections with lots of pedestrians where shorter cycle times are preferred as pedestrian crashes increase with longer wait times.A number of factors have a negative impact on safety including,free left turns,more approach lanes,intersection arms operating near or over capacity in peak periods and higher speed limits.展开更多
基金The National Natural Science Foundation of China(No.51238008,51408322)
文摘This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle paths in Nanjing, China,were observed with cameras.Then,the field data including vehicle number,velocity characteristics and passing event features were analyzed in detail.Data analysis and fitting reveal that the speed difference has little impact on the passing event number,as does the bicycle ratio.The Gaussian function can better describe the relationship between the passing event number and bicycle volume (density).The valid use level of bicycle path width influences the inflexion of the passing events-density fitting curve.The conclusions can be applied for estimating the passing events in mixed bicycle flows and for choosing a suitable width of separate bicycle path.
文摘Signalized intersections sometimes involve multistage pedestrian crossings, in which pedestrians cross to one or more islands and then wait there for a signal to continue. When signals are timed without attention to pedestrian progression, pedestrian delay at multistage crossings can be very long. This paper addresses two issues. First, pedestrian delay at multistage crossings is rarely evaluated because there are no tools in the industry for that purpose except microsimulation. We present a numerical method for determining crossing delay with any number of stages and with the possibility of multiple WALK intervals per cycle. The same method can be applied to single stage crossings, to diagonal two-stage crossings where pedestrians may have path choice, and bicycle two-stage turns. This method has been implemented in a freely available online tool. Second, we describe several signal timing techniques for improving pedestrian and bicyclist progression, and thus reducing their delay, through multistage crossings. They include reservice for selected crossing phases, left turn overlaps, having pedestrian phases overlap each other, and bidirectional bicycle crossings which create path options for two-stage turns. Examples show the potential for large reductions in pedestrian delay, often with little or no increase in vehicular delay. In one example, the addition of a short pedestrian overlap phase reduced average pedestrian delay at a 3-stage crossing by 82 s while average vehicular delay increased by only 0.5 s.
文摘Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, pedestrians and bikes (ped/bike) are encountered unsmooth and hazardous crossings when right-turn vehicles encroaching their lanes. Meanwhile, this also causes conflicts between right-turn and through vehicles at the crossing street. To better protect ped/bike at crossings with right-turn vehicles, this paper proposes a concept of “right-turn vehicle box” (RTVB) as a supplemental treatment within right-turn lanes. Sight distance, geometric conditions, and behaviors of vehicles and ped/bike are key factors to consider so as to set up the criteria and to design the suitable treatment. A case study was conducted at an intersection pair in Houston, USA to shape the idea of RTVB, together with driving simulator tests under relevant scenarios. The preliminary crosscheck examination shows that the right-turn vehicle box could possibly provide ped/ bike with smoother and safer crossings. In the interim, the safety and efficiency of right-turn operations were also improved. To further validate the effects, implementation studies should be conducted before the RTVB can make its debut in practice. Future works will focus on the complete warrants and design details of this treatment. Moreover, the concept of “vehicle box” could also be transplanted to other places where turning movement(s) needs assistance or improvements.
基金Supported by the National Basic Research Program of China (2012CB725400)the National Natural Science Foundation of China(70901005+2 种基金7107101671131001)Fundamental Research Funds for the Central Universities(2011JBM055)
文摘To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actual traffic situation, the concept of borrowed priority, in which the majorroad bicycles borrow the priority of major-road cars to enter the intersections when consecutive headway for major-steam cars is lower than the critical gap for minor-road cars, was addressed. Bicycle capacity at a typical unsignalized intersection is derived by the addition-conflict-flow procedure. The proposes model was validated by the empirical investigation. Numerical results show that bicycle capacity at an intersection is the function of major-road and minor-road car streams. Bicycle capacity increases with increasing major-road cars but decreases with increasing minorroad cars.
基金Sponsored by the National Basic Research Program of China(973 Program)(Grant No.2012CB723303)
文摘The capacity is impacted badly by pedestrians' violation behavior at signal intersections. In order to quantify the impact,the time-headway and the vehicular speed from start-up to reach the stable saturation flow with and without pedestrian traffic are used as the direct measurements. Using the statistical analysis,the timeheadway of saturation flow is mainly affected by the position of pedestrians and the degree of pedestrians 'influence is classified into four levels. Then the speed-time profile for the vehicular acceleration at each level is fitted by Curve Fitting Software. Based on the effect to the time-headway and acceleration time,the model of capacity influenced by pedestrians is established and the influence is quantified, which enriches the fundamental theory of traffic engineering. The result shows that the vehicular capacity can be decreased by 14%at the worst case( level I). The conclusions obtained in this paper are valuable for better management of the signal intersection.
文摘Pedestrian safety related to public bus transit is an integral part of promoting sustainability especially in the urban setting. This concept has received significant attention within the last decade as transit agencies strive to make their systems more sustainable and safer at the same time. This study examined pedestrian collisions related to public transit buses in Philadelphia over a three-year study period from 2008 to 2011. The objective is to perform a detailed analysis on crash records, which provides the foundation on statistics for bus-pedestrian collision to allow for future studies in modeling work in this field. Results of this research provided insights on bus-pedestrian collisions in terms of bus maneuver, cause of crash, impact point of bus, and relation to hourly traffic volume. A strong correlation was found between traffic volume and bus-pedestrian collision rate in terms of hours of the day. For any given hour, an increase in collision frequency was found if the traffic volume exceeds a threshold of 5% of its average annual daily traffic. This serves as an indicator of locations that pedestrians are vulnerable at. Analyses were conducted to the fullest extent allowable by the limited dataset. This study presents findings that can be future developed and investigated in future studies. Additionally, countermeasures are recommended in each section that presents a critical area to address.
文摘Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金Project(2012CB725400) supported by the National Basic Research Program of ChinaProjects(70901005, 71071016, 71131001) supported by the National Natural Science Foundation of ChinaProject(2011JBM055) supported by the Fundamental Research Funds for the Central Universities of China
文摘To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.
文摘Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.
基金Sponsored by Project of National Natural Science Foundation of China(51278345)Key Project of National Social Science Foundation of China(12&ZD203)
文摘The Historic Conservation District(HCD) is an important target for urban heritage protection in China. The spatial characteristics of its road system,formed before the appearance of automobile,do not adapt to the car traffic. In the context of very rapid motorization in Chinese cities,the increase in car traffic brings an inevitable trouble for the protection of HCDs. Road widening and pedestrianization are two popular solutions to this problem in current practices; however,both of them may lead to negative consequences. Inspired by the development of Zone 30 in European cities,this paper firstly cleared up first some misunderstandings of the concept of traffic calming,then taking the inner city of Paris as an example,explained how traffic calming measures can be implemented in HCDs and what effects will be generated. Finally,it discussed the possible application of traffic calming measures in HCDs projects in China and pointed out the specific situations of Chinese cities to which the planners should pay more attention.
基金Project(70972041)supported by the National Natural Science Foundation of ChinaProject(20100009110010)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2011YJS246)supported by Fundamental Research Funds for the Central Universities of China
文摘Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.
基金Project(NRF-2011-0000868)supported by the National Research Foundation of Korea(NRF)funded by the Korea government(MEST)Project(2011-0003968)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)
文摘This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two kinds of stairs(one is stairs with 1.5 m in width and the other is stairs with 3 m in width) was estimated by calculating the number of steps on the stairs by a zone which is divided into 30 cm×30 cm.The result shows high density in the middle in the case of narrow stairs but traffic is concentrated on stair inside(pillar side) in stairs with large width.In conclusion,the location for installation of piezoelectric energy harvesting system should be considered differently on stairs width and the number of installation depends on total expected traffic and the expected traffic for a device.
基金Supported by the Science Foundation of Gansu(2008GS00563)the Research Foundation of LUT(X1014XC034)
文摘The safety performance of pedestrian and roadway dimensional-dividing buildings under seismic excitations are analysed. Considering the large displacement of the isolator bearing during earthquake, the gravity force becomes the dominant forces because of the accumulated permanent deformations in the building, which results in the structure collapse due to lateral instability. A mod- el is established based on an inelastic time history analysis to consider P - z~ effects in multi-degree- of-freedom. A safety criterion of the system is defined. The influence of the stiffness of an independ- ent column is revealed and compared with the influence of the shear force of the independent column to analyze the safety of the structures. Numerical results show that the special structure of pedestrian and roadway dimensional-dividing buildings can reduce the risk of the building in earthquake. The suitable section and height of the independent column greatly affect the building safety.
文摘Background: Cycling currently comprises only 1% of transport trips in the U.S. despite benefits for air pollution, traffic congestion, and improved public health. Methods: Building upon the Level of Traffic Stress (LTS) methodology, we assessed GPS trip data from utilitarian cyclists to understand route preferences and the level of low stress cycling connection between origins and destinations. GPS data were obtained from adult transport cyclists over multiple days. All bikeable road segments in the network were assigned an LTS score. The shortest paths between each origin and destination along bikeable roadways and along low stress (LTS 1 or 2) routes were calculated. Route trajectories were mapped to the LTS network, and the LTS and distances of observed, the shortest and low stress routes were compared. LTS maps and animations were developed to highlight where low stress connections were lacking. Results: There were 1038 unique cycling trips from 87 participants included in the analysis. An exclusively low stress route did not exist for 51% of trips. Low stress routes that were possible were, on average, 74% longer than the shortest possible path and 56% longer than the observed route. Observed routes were longer and lower stress than the shortest possible route. Conclusions: Results indicate that transport cyclists traveled beyond low stress residential areas and that low stress routes with acceptable detour distances were lacking. Cyclists appeared to weigh both route distance and quality and were willing to trade maximum directness for lower stress. GPS data provide additional information to support planning decisions to increase the impact of infrastructure investments on cycling mode share.
文摘Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and various predictor variables based on open source point-of-interest (POI) data which can provide specific land use features and user characteristics. Spatial regression models were developed at Traffic Analysis Zone (TAZ) level using 10,333 pedestrian crash records within the Fifth Ring of Beijing in 2015. Several spatial econometrics approaches were used to examine the spatial autocorrelation in crash count per TAZ, and the spatial heterogeneity was investigated by a geographically weighted regression model. The results showed that spatial error model performed better than other two spatial models and a traditional ordinary least squares model. Specifically, bus stops, hospitals, pharmacies, restaurants, and office buildings had positive impacts on pedestrian crashes, while hotels were negatively associated with the occurrence of pedestrian crashes. In addition, it was proven that there was a significant sign of localization effects for different POIs. Depending on these findings, lots of recommendations and countermeasures can be proposed to better improve the traffic safety for pedestrians.
文摘Pabna is one the most densely populated town with poor transport infrastructure in Bangladesh. Here huge pedestriangathers in roads and intersections in CBD (Central Business District) area mainly for commercial and business purposes. At present,pedestrian facilities are one of the greatest challenges in terms of traffic and safety for the urban dwellers. The footpath, zebra rossing,road intersection, walkways, parking and other facilities are the major part of road transportation system as well as pedestrianfacilities and people have to pass walking distance to reach their destinations, before and after use of transport mode. For instance,this paper tries to emphasize the problems of pedestrian facilities and to explore the qualitative level of comfort for the pedestrians ofthree selected intersections namely Traffic More, Indra More and Nimtola More in CBD area of Pabna Municipality through primaryand secondary data. However, about 60% trips are making on foot every day, but the pedestrians are facing many problems whileusing the walkways. Pedestrian crossing behaviors were also observed by using pedestrian volume survey and the survey exploresthat pedestrian crossing rate at these intersections is about 5,000 to 7,000 per hour at a peak period and average 15% to 25% illegalcrossing occurs at those intersections. The physical observation and data from the questionnaire survey also indicate that informalbusiness on the footpath, illegal parking, illegal vendor on walkways, physical obstacle, poor lighting facilities and geometricproblem of the road intersection makes uncomfortable situations for the pedestrian day by day.
文摘Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger volume distribution. Influenced urban realm around station becomes the focus of the optimization of the sustainable urban development. Pedestrian microscopic simulation method establishes the comprehensive dynamic behavior rules in a part of urban space through simulating the behavior law by digital tools, in which the internal demand and motive mechanism of the development and change of urban space fairly well by digital representing and analyzing relevant laws can be explained. After that, the research with the realm as the carrier analyzed the demand of each simulation level and the choice of simulation parameters based on analyzing the walking connection behavior characteristics, and then further established the methodology system of pedestrian microscopic simulation. At last, the research taking the study of influenced urban realm around typical station for sample explored the application method of optimizing of urban space and traffic organization based on AnyLogic platform.
文摘A significant proportion of urban crashes,especially serious and fatal crashes,occur at traffic signals.Many of the black-spots in both Australia and New Zealand cities occur at high volume and/or high-speed traffic signals.Given this,crash reduction studies often focus on the major signalised intersections.However,there is limited information that links the phasing configuration,degree of saturation and overall cycle time to crashes.While a number of analysis tools are available for assessing the efficiency of intersections,there are very few tools that can assist engineers in assessing the safety effects of intersection upgrades and new intersections.Safety performance functions have been developed to help quantify the safety impact of various traffic signal phasing configurations and level of intersection congestion at low and high-speed traffic signals in New Zealand and Australia.Data from 238 signalised intersection sites in Auckland,Wellington,Christchurch,Hamilton,Dunedin and Melbourne was used to develop crash prediction models for key crash-causing movements at traffic signals.Different variables(road features)effect each crash type.The models indicate that the safety of intersections can be improved by longer cycle times and longer lost inter-green times,especially all-red time,using fully protected right turns and by extending the length of right turn bays.The exception is at intersections with lots of pedestrians where shorter cycle times are preferred as pedestrian crashes increase with longer wait times.A number of factors have a negative impact on safety including,free left turns,more approach lanes,intersection arms operating near or over capacity in peak periods and higher speed limits.