When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majori...Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.展开更多
Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in tur...Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in turn, can help achieve sustainable development goals in urban areas. This pilot study uses wearable technology data to present a new method for measuring pedestrian stress in urban environments and the results were presented as an interactive geographic information system map to support risk-informed decision-making. The approach involves analyzing data from wearable devices using heart rate variability (RMSSD and slope analysis) to identify high-stress locations. This data-driven approach can help urban planners and safety experts identify and address pedestrian stressors, ultimately creating safer, more walkable cities. The study addresses a significant challenge in pedestrian safety by providing insights into factors and locations that trigger stress in pedestrians. During the pilot study, high-stress pedestrian experiences were identified due to issues like pedestrian-scooter interaction on pedestrian paths, pedestrian behavior around high foot traffic areas, and poor visibility at pedestrian crossings due to inadequate lighting.展开更多
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ...Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.展开更多
Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means...Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios.展开更多
With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.T...With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy.展开更多
Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion s...Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper.展开更多
This study explores the challenges posed by pedestrian detection and occlusion in AR applications, employing a novel approach that utilizes RGB-D-based skeleton reconstruction to reduce the overhead of classical pedes...This study explores the challenges posed by pedestrian detection and occlusion in AR applications, employing a novel approach that utilizes RGB-D-based skeleton reconstruction to reduce the overhead of classical pedestrian detection algorithms during training. Furthermore, it is dedicated to addressing occlusion issues in pedestrian detection by using Azure Kinect for body tracking and integrating a robust occlusion management algorithm, significantly enhancing detection efficiency. In experiments, an average latency of 204 milliseconds was measured, and the detection accuracy reached an outstanding level of 97%. Additionally, this approach has been successfully applied in creating a simple yet captivating augmented reality game, demonstrating the practical application of the algorithm.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
A novel anti-collision algorithm in RFID wireless network is proposed.As it is put forward on the basis of collision tree(CT)and improved collision tree(lCT) anti-collision protocols,we call it adaptive collision tree...A novel anti-collision algorithm in RFID wireless network is proposed.As it is put forward on the basis of collision tree(CT)and improved collision tree(lCT) anti-collision protocols,we call it adaptive collision tree protocol(ACT).The main novelty of this paper is that the AD strategy is introduced and used in ACT to decrease collisions and improve the tag system throughput.AD strategy means that query strings will divide into two or four branches adaptively according to the label quantity.This scheme can decrease both depth of query and collision timeslots,and avoid producing too much idle timeslots at the same time.Both theoretical analysis and simulation results indicate that the novel proposed anticollision protocol ACT outperforms the previous CT and ICT protocols in term of time complexity,system throughput,and communication complexity.展开更多
Collision and security issues are considered as barriers to RFID applications.In this paper,a parallelizable anti-collision based on chaotic sequence combined dynamic frame slotted aloha to build a high-efficiency RFI...Collision and security issues are considered as barriers to RFID applications.In this paper,a parallelizable anti-collision based on chaotic sequence combined dynamic frame slotted aloha to build a high-efficiency RFID system is proposed.In the tags parallelizable identification,we design a Discrete Markov process to analyze the success identification rate.Then a mutual authentication security protocol merging chaotic anti-collision is presented.The theoretical analysis and simulation results show that the proposed identification scheme has less than 45.1%of the identification time slots compared with the OVSF-system when the length of the chaos sequence is 31.The success identification rate of the proposed chaotic anti-collision can achieve 63%when the number of the tag is100.We test the energy consumption of the presented authentication protocol,which can simultaneously solve the anti-collision and security of the UHF RFID system.展开更多
A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust ...A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust access probability in random access protocols.Conventional researches estimate the number of tags in MAC layer based on statistics of empty slots,collided slots and successful slots.Usually,a collision detection algorithm is employed to determine types of time slots.Only three types are distinguished because of lack of ability to detect the number of tags in single time slot.In this paper,a physical layer algorithm is proposed to detect the number of tags in a collided slot.Mean shift algorithm is utilized,and some properties of backscatter signals are investigated.Simulation results verify the effectiveness of the proposed solution in terms of low estimation error with a high SNR range,outperforming the existing MAC layer approaches.展开更多
Recently,object identification with radio frequency identification(RFID)technology is becoming increasingly popular.Identification time is a key performance metric to evaluate the RFID system.The present paper analyze...Recently,object identification with radio frequency identification(RFID)technology is becoming increasingly popular.Identification time is a key performance metric to evaluate the RFID system.The present paper analyzes the deficiencies of the state-of-the-arts algorithms and proposes a novel sub-frame-based algorithm with adaptive frame breaking policy to lower the tag identification time for EPC global C1 Gen2 UHF RFID standard.Through the observation of slot statistics in a sub-frame,the reader estimates the tag quantity and efficiently calculates an optimal frame size to fit the unread tags.Only when the expected average identification time in the calculated frame size is less than that in the previous frame size,the reader starts the new frame.Moreover,the estimation of the proposed algorithm is implemented by the look-up tables,which allows dramatically reduction in the computational complexity.Simulation results show noticeable throughput and time efficiency improvements of the proposed solution over the existing approaches.展开更多
Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the succ...Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the success of tag identification.An efficient anti-collision protocol is very crucially in RFID system.In this paper,an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern,which introduces a Bi-response mechanism.In Bi-response mechanism,two groups of tags allowed to reply to the reader in the same slot.According to Bi-response mechanism,the BRTP strengthens the tag identification of RFID network by reducing the total number of queries and exchanged messages between the reader and tags.Both theoretical analysis and numerical results verify the effectiveness of the proposed BRTP in various performance metrics including the number of total slots,system efficiency,communication complexity and total identification time.The BRTP is suitable to be applied in passive RFID systems.展开更多
Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in thr...Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in throughput are very limited.In order to solve these problems,this paper presents a novel tag anti-collision scheme,namely adaptive hybrid search tree(AHST),by combining two algorithms of the adaptive binary-tree disassembly(ABD) and the combination query tree(CQT),in which ABD has superior tag identification velocity and CQT has optimum performance in system throughput and search timeslots.From the theoretical analysis and numerical simulations,the proposed algorithm can colligate the advantages of above algorithms,improve the system throughput and reduce the searching timeslots dramatically.展开更多
In this paper, we develop a novel mathematical model to estimate the probability distribution function of the number of tags discovered after a certain number of interrogation rounds. In addition, the pdfs of the numb...In this paper, we develop a novel mathematical model to estimate the probability distribution function of the number of tags discovered after a certain number of interrogation rounds. In addition, the pdfs of the number of rounds needed to discover all the tags are also calculated. The estimation of such pdfs will be helpful in estimating the number of interrogation rounds and the optimal parameter configuration of the RFID system which in turn will be helpful in estimating the time needed to discover all tags. Our results show that the proposed model accurately predicts the tags detection probability. We then use the proposed model to optimally configure the reader parameters (i.e. the frame size and the number of interrogation rounds).展开更多
Auto anti-collision technology is one of the main research subjects of automobiles’ safety technology. Aiming at the key technology of Auto anti-collision, measuring the distance from obstacles, based on the theory o...Auto anti-collision technology is one of the main research subjects of automobiles’ safety technology. Aiming at the key technology of Auto anti-collision, measuring the distance from obstacles, based on the theory of phase laser distance ranging, Laser Diode (LD) distance-measuring system for auto anti-collision has been developed to solve the problem of on-line measuring distance technology in middle to long distance utilizing the good characteristics of LD when modulating its optical intensity and adopting typical kinds of filter techniques in this paper. By theoretical analysis, adopting typical kinds of filter techniques can reduce the interference of strong light, so distance-measuring range can be 0.5–100 m in daytime or 1–200 m at night. And more, from theoretical analysis and experiment result, it can guarantee the high measuring resolution which can be less than 24.5 mm, utilizing the method of two Laser Diode optical intensity modulating wavelength and complimenting precise calibration and revision. The idea of LD distance-measuring technology is novel and feasible and this technology can be applied in Auto anti-collision. Key words laser diode - phase laser distance ranging - filter techniques - auto anti-collision CLC number TH 161 Foundation item: Supported by the National Natural Science Foundation of China (59675080, 59805006) and Wuhan Chenguang Foundation (20025001001)Biography: Zhang Xin-bao (1965-), male, Associate professor, research direction: precise mechanism and instrument.展开更多
Multi-tag collision imposes a vital detrimental effect on reading performanceof an RFID system. In order to ameliorate such collision problem and to improve thereading performance, this paper proposes an efficient tag...Multi-tag collision imposes a vital detrimental effect on reading performanceof an RFID system. In order to ameliorate such collision problem and to improve thereading performance, this paper proposes an efficient tag identification algorithm termedas the Enhanced Adaptive Tree Slotted Aloha (EATSA). The key novelty of EATSA is toidentify the tags using grouping strategy. Specifically, the whole tag set is divided intogroups by a frame of size F. In cases multiple tags fall into a group, the tags of the groupare recognized by the improved binary splitting (IBS) method whereas the rest tags arewaiting in the pipeline. In addition, an early observation mechanism is introduced toupdate the frame size to an optimum value fitting the number of tags. Theoretical analysisand simulation results show that the system throughput of our proposed algorithm canreach as much as 0.46, outperforming the prior Aloha-based protocols.展开更多
In this paper,a dynamic multi-ary query tree(DMQT)anti-collision protocol for Radio Frequency Identification(RFID)systems is proposed for large scale passive RFID tag identification.The proposed DMQT protocol is based...In this paper,a dynamic multi-ary query tree(DMQT)anti-collision protocol for Radio Frequency Identification(RFID)systems is proposed for large scale passive RFID tag identification.The proposed DMQT protocol is based on an iterative process between the reader and tags which identifies the position of collision bits through map commands and dynamically encodes them to optimize slots allocation through query commands.In this way,the DMQT completely eliminates empty slots and greatly reduces collision slots,which in turn reduces the identification time and energy costs.In addition and differently to other known protocols,the DMQT does not need to estimate the number of tags,reducing the protocol implementation complexity and eliminating the uncertainty caused by the estimation algorithm.A numerical analysis shows that DMQT has better performance than other algorithms for a number of tags larger than 300.Meanwhile,when the number of tags is 2000 and the tag identity(ID)length is 128 bits,the total identification time is 2.58 s and the average energy cost for a tag identification is 1.2 mJ,which are 16.9%and 10.4%less than those of state-of-the-art algorithms,respectively.In addition,a DMQT extension based on ACK command has also been presented to deal with capture effect and avoid missing identification.展开更多
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
基金Project supported by the National Natural Science Foundation of China(Grant No.71603146).
文摘Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.
文摘Walkability is an essential aspect of urban transportation systems. Properly designed walking paths can enhance transportation safety, encourage pedestrian activity, and improve community quality of life. This, in turn, can help achieve sustainable development goals in urban areas. This pilot study uses wearable technology data to present a new method for measuring pedestrian stress in urban environments and the results were presented as an interactive geographic information system map to support risk-informed decision-making. The approach involves analyzing data from wearable devices using heart rate variability (RMSSD and slope analysis) to identify high-stress locations. This data-driven approach can help urban planners and safety experts identify and address pedestrian stressors, ultimately creating safer, more walkable cities. The study addresses a significant challenge in pedestrian safety by providing insights into factors and locations that trigger stress in pedestrians. During the pilot study, high-stress pedestrian experiences were identified due to issues like pedestrian-scooter interaction on pedestrian paths, pedestrian behavior around high foot traffic areas, and poor visibility at pedestrian crossings due to inadequate lighting.
基金supported by the National Natural Science Foundation of China under(Grant No.52175531)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant(Grant Nos.KJQN202000605 and KJZD-M202000602)。
文摘Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.
文摘Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios.
文摘With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy.
基金supported by the Henan Provincial Science and Technology Research Project under Grants 232102211006,232102210044,232102211017,232102210055 and 222102210214the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205+1 种基金the Undergraduate Universities Smart Teaching Special Research Project of Henan Province under Grant Jiao Gao[2021]No.489-29the Doctor Natural Science Foundation of Zhengzhou University of Light Industry under Grants 2021BSJJ025 and 2022BSJJZK13.
文摘Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper.
文摘This study explores the challenges posed by pedestrian detection and occlusion in AR applications, employing a novel approach that utilizes RGB-D-based skeleton reconstruction to reduce the overhead of classical pedestrian detection algorithms during training. Furthermore, it is dedicated to addressing occlusion issues in pedestrian detection by using Azure Kinect for body tracking and integrating a robust occlusion management algorithm, significantly enhancing detection efficiency. In experiments, an average latency of 204 milliseconds was measured, and the detection accuracy reached an outstanding level of 97%. Additionally, this approach has been successfully applied in creating a simple yet captivating augmented reality game, demonstrating the practical application of the algorithm.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金This work is supported by the National Natu ral Science Foundation of China under grant No.61071073 and No. 61371092, Doctoral Fund of Ministry of Education of China (No.20090061110043).
文摘A novel anti-collision algorithm in RFID wireless network is proposed.As it is put forward on the basis of collision tree(CT)and improved collision tree(lCT) anti-collision protocols,we call it adaptive collision tree protocol(ACT).The main novelty of this paper is that the AD strategy is introduced and used in ACT to decrease collisions and improve the tag system throughput.AD strategy means that query strings will divide into two or four branches adaptively according to the label quantity.This scheme can decrease both depth of query and collision timeslots,and avoid producing too much idle timeslots at the same time.Both theoretical analysis and simulation results indicate that the novel proposed anticollision protocol ACT outperforms the previous CT and ICT protocols in term of time complexity,system throughput,and communication complexity.
基金supported by National Basic Research Program of China(973 Program, No.2010CB327403)
文摘Collision and security issues are considered as barriers to RFID applications.In this paper,a parallelizable anti-collision based on chaotic sequence combined dynamic frame slotted aloha to build a high-efficiency RFID system is proposed.In the tags parallelizable identification,we design a Discrete Markov process to analyze the success identification rate.Then a mutual authentication security protocol merging chaotic anti-collision is presented.The theoretical analysis and simulation results show that the proposed identification scheme has less than 45.1%of the identification time slots compared with the OVSF-system when the length of the chaos sequence is 31.The success identification rate of the proposed chaotic anti-collision can achieve 63%when the number of the tag is100.We test the energy consumption of the presented authentication protocol,which can simultaneously solve the anti-collision and security of the UHF RFID system.
基金This work was supported in part by the National Natural Science Foundation of China under project contracts[NOS.61601093,61791082,61701116,61371047]in part by Sichuan Provincial Science and Technology Planning Program of China under project contracts No.2016GZ0061 and No.2018HH0044+2 种基金in part by Guangdong Provincial Science and Technology Planning Program of China under project contracts No.2015B090909004 and No.2016A010101036in part by the fundamental research funds for the Central Universities under project contract No.ZYGX2016Z011in part by Science and Technology on Electronic Information Control Laboratory.
文摘A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust access probability in random access protocols.Conventional researches estimate the number of tags in MAC layer based on statistics of empty slots,collided slots and successful slots.Usually,a collision detection algorithm is employed to determine types of time slots.Only three types are distinguished because of lack of ability to detect the number of tags in single time slot.In this paper,a physical layer algorithm is proposed to detect the number of tags in a collided slot.Mean shift algorithm is utilized,and some properties of backscatter signals are investigated.Simulation results verify the effectiveness of the proposed solution in terms of low estimation error with a high SNR range,outperforming the existing MAC layer approaches.
文摘Recently,object identification with radio frequency identification(RFID)technology is becoming increasingly popular.Identification time is a key performance metric to evaluate the RFID system.The present paper analyzes the deficiencies of the state-of-the-arts algorithms and proposes a novel sub-frame-based algorithm with adaptive frame breaking policy to lower the tag identification time for EPC global C1 Gen2 UHF RFID standard.Through the observation of slot statistics in a sub-frame,the reader estimates the tag quantity and efficiently calculates an optimal frame size to fit the unread tags.Only when the expected average identification time in the calculated frame size is less than that in the previous frame size,the reader starts the new frame.Moreover,the estimation of the proposed algorithm is implemented by the look-up tables,which allows dramatically reduction in the computational complexity.Simulation results show noticeable throughput and time efficiency improvements of the proposed solution over the existing approaches.
基金This work was partially supported by the Key-Area Research and Development Program of Guangdong Province(2019B010136001,20190166)the Basic and Applied Basic Research Major Program for Guangdong Province(2019B030302002)the Science and Technology Planning Project of Guangdong Province LZC0023 and LZC0024.
文摘Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the success of tag identification.An efficient anti-collision protocol is very crucially in RFID system.In this paper,an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern,which introduces a Bi-response mechanism.In Bi-response mechanism,two groups of tags allowed to reply to the reader in the same slot.According to Bi-response mechanism,the BRTP strengthens the tag identification of RFID network by reducing the total number of queries and exchanged messages between the reader and tags.Both theoretical analysis and numerical results verify the effectiveness of the proposed BRTP in various performance metrics including the number of total slots,system efficiency,communication complexity and total identification time.The BRTP is suitable to be applied in passive RFID systems.
基金Supported by the National Natural Science Foundation of China(No.61401407)
文摘Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in throughput are very limited.In order to solve these problems,this paper presents a novel tag anti-collision scheme,namely adaptive hybrid search tree(AHST),by combining two algorithms of the adaptive binary-tree disassembly(ABD) and the combination query tree(CQT),in which ABD has superior tag identification velocity and CQT has optimum performance in system throughput and search timeslots.From the theoretical analysis and numerical simulations,the proposed algorithm can colligate the advantages of above algorithms,improve the system throughput and reduce the searching timeslots dramatically.
文摘In this paper, we develop a novel mathematical model to estimate the probability distribution function of the number of tags discovered after a certain number of interrogation rounds. In addition, the pdfs of the number of rounds needed to discover all the tags are also calculated. The estimation of such pdfs will be helpful in estimating the number of interrogation rounds and the optimal parameter configuration of the RFID system which in turn will be helpful in estimating the time needed to discover all tags. Our results show that the proposed model accurately predicts the tags detection probability. We then use the proposed model to optimally configure the reader parameters (i.e. the frame size and the number of interrogation rounds).
文摘Auto anti-collision technology is one of the main research subjects of automobiles’ safety technology. Aiming at the key technology of Auto anti-collision, measuring the distance from obstacles, based on the theory of phase laser distance ranging, Laser Diode (LD) distance-measuring system for auto anti-collision has been developed to solve the problem of on-line measuring distance technology in middle to long distance utilizing the good characteristics of LD when modulating its optical intensity and adopting typical kinds of filter techniques in this paper. By theoretical analysis, adopting typical kinds of filter techniques can reduce the interference of strong light, so distance-measuring range can be 0.5–100 m in daytime or 1–200 m at night. And more, from theoretical analysis and experiment result, it can guarantee the high measuring resolution which can be less than 24.5 mm, utilizing the method of two Laser Diode optical intensity modulating wavelength and complimenting precise calibration and revision. The idea of LD distance-measuring technology is novel and feasible and this technology can be applied in Auto anti-collision. Key words laser diode - phase laser distance ranging - filter techniques - auto anti-collision CLC number TH 161 Foundation item: Supported by the National Natural Science Foundation of China (59675080, 59805006) and Wuhan Chenguang Foundation (20025001001)Biography: Zhang Xin-bao (1965-), male, Associate professor, research direction: precise mechanism and instrument.
文摘Multi-tag collision imposes a vital detrimental effect on reading performanceof an RFID system. In order to ameliorate such collision problem and to improve thereading performance, this paper proposes an efficient tag identification algorithm termedas the Enhanced Adaptive Tree Slotted Aloha (EATSA). The key novelty of EATSA is toidentify the tags using grouping strategy. Specifically, the whole tag set is divided intogroups by a frame of size F. In cases multiple tags fall into a group, the tags of the groupare recognized by the improved binary splitting (IBS) method whereas the rest tags arewaiting in the pipeline. In addition, an early observation mechanism is introduced toupdate the frame size to an optimum value fitting the number of tags. Theoretical analysisand simulation results show that the system throughput of our proposed algorithm canreach as much as 0.46, outperforming the prior Aloha-based protocols.
基金The authors received funding for this study from the National Key R&D Program(https://chinainnovationfunding.eu/national-key-rd-programmes/),project contract No.2018YFB1802102(G.W.)and 2018AAA0103203(W.T,F.X,G.W.)from the National Natural Science Foundation of China(https://www.nsfc.gov.cn/),project contracts No.61971113(G.W.)and 61901095(D.I.)+6 种基金from the Guangdong Provincial Research and Development Plan in Key Areas(https://chinainnovationfunding.eu/funding-programmes-guangdong-province-2/)project contracts No.2019B010141001(G.W.)and 2019B010142001(G.W.)from the Sichuan Provincial Science and Technology Planning Program(https://www.sc.gov.cn/10462/10758/10759/10763/2010/10/28/10147629.shtml)project contracts No.2020YFG0039(G.W.),2021YFG0013(G.W.),and 2021YFH0133(D.I.)from the Ministry of Education(http://en.moe.gov.cn/)and China Mobile(http://www.chinamobileltd.com)Joint Fund Program,project contract No.MCM20180104(G.W.,G.L.)from the fundamental research funds for the Central Universities(managed by Department of Finance,https://www.fmprc.gov.cn/mfa_eng/wjb_663304/zzjg_663340/cws_665320/)project contract no.YGX2019Z022(G.W.,G.L.,D.I.).
文摘In this paper,a dynamic multi-ary query tree(DMQT)anti-collision protocol for Radio Frequency Identification(RFID)systems is proposed for large scale passive RFID tag identification.The proposed DMQT protocol is based on an iterative process between the reader and tags which identifies the position of collision bits through map commands and dynamically encodes them to optimize slots allocation through query commands.In this way,the DMQT completely eliminates empty slots and greatly reduces collision slots,which in turn reduces the identification time and energy costs.In addition and differently to other known protocols,the DMQT does not need to estimate the number of tags,reducing the protocol implementation complexity and eliminating the uncertainty caused by the estimation algorithm.A numerical analysis shows that DMQT has better performance than other algorithms for a number of tags larger than 300.Meanwhile,when the number of tags is 2000 and the tag identity(ID)length is 128 bits,the total identification time is 2.58 s and the average energy cost for a tag identification is 1.2 mJ,which are 16.9%and 10.4%less than those of state-of-the-art algorithms,respectively.In addition,a DMQT extension based on ACK command has also been presented to deal with capture effect and avoid missing identification.
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.