This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.Th...This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.展开更多
A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce t...A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density.展开更多
An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the proces...An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.展开更多
With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of l...With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xu- anwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians'- visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties.展开更多
The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedan...The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.展开更多
The paper presents an improved cellular automaton model according to the feature of evacuation near the outlet. We studied friction and turning factors that affect pedestrian evacuation speed. By using mathematical me...The paper presents an improved cellular automaton model according to the feature of evacuation near the outlet. We studied friction and turning factors that affect pedestrian evacuation speed. By using mathematical methods to derive expressions of friction function and turning function. The average pedestrian outflow of the simulation that includes the effect of both the frictional function and the turning function agrees well with experiment result. On the contrary, the simulation results that only include the effect of the frictional function are not corresponding to the experiment results well. Simulation results show that friction and turning can not be ignored. By analyzing the simulation results, it verified that the model can accurately reflect the actual evacuation process and has practical value.展开更多
This paper shows the method of estimating spatiotemporal distribution of pedestrians by using watch cameras. We estimate the distribution without tracking technology, with pedestrian's privacy protected and in Umeda ...This paper shows the method of estimating spatiotemporal distribution of pedestrians by using watch cameras. We estimate the distribution without tracking technology, with pedestrian's privacy protected and in Umeda underground mall. Lately spatiotemporal distribution of pedestrians has being increasingly important in the field of urban planning, disaster prevention planning, marketing and so on. Although many researchers have tried to capture the information of location as dealing with some sensors, some problems still remain, such as the investment of sensors, the restriction of the number of people who has the device they are able to capture. From such background, we develop an original labelling algorithm and estimate the spatiotemporal distribution of pedestrians and the information of the passing time and the direction of pedestrians from sequential images of a watch camera.展开更多
The crowd evacuation of pairs of pedestrians(i.e.pairs consisting of a parent and a child)is numerically investigated.Here,it is assumed that all pedestrians have their own partners,and move randomly inside the bounde...The crowd evacuation of pairs of pedestrians(i.e.pairs consisting of a parent and a child)is numerically investigated.Here,it is assumed that all pedestrians have their own partners,and move randomly inside the bounded domain of the right-hand room as an initial state.All pedestrians start their evacuations after they contact their partners.The evacuations are completed by the transfer of all the pairs from the right-hand room to the left-hand room through an exit.A frozen swarm tends to appear in the right-hand room as the total number of pedestrians increases.The frozen swarm moves without changing its form,unless it is dissolved by a strong collision with a pair of pedestrians that comes back from the left-hand room by accident.Finally,the evacuation speed also depends on the area of the Escape Zone,whereas an obstacle placed in front of an exit also changes the speed of the evacuation in accordance with the type of motion of the children.展开更多
A multi-agent evacuation model is proposed in this paper to simulate the pedestrian evacuation process in stadium with or without obstacles.The authors give a multi-agent individual decisionmaking framework,in which t...A multi-agent evacuation model is proposed in this paper to simulate the pedestrian evacuation process in stadium with or without obstacles.The authors give a multi-agent individual decisionmaking framework,in which the action direction of each pedestrian(called agent) is affected by the distance of the agent to the exits and the occupant number and density within the view field of the agent.Different from the existing results,the authors divide all the pedestrians in the stadium into four classes:Young male,young female,old male,and old female.In evacuation process,the weighting that affects individual decision-making between each class of agents is different.In the simulation,the authors present the effects of obstacles,crowd distribution and the exit position in evacuation process.Simulation results show that the proposed model can reproduce exactly the real evacuation process in stadium.Therefore,this method might be useful to assess public buildings design.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803903)the National Natural Science Foundation of China(Grant No.62003182)。
文摘This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB725400)the National Natural Science Foundation of China(Grant No.11172035)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.2013JBM046)the China Postdoctoral Science Foundation(Grant Nos.20090460184 and 201003036)the Talent Foundation of Beijing Jiaotong University,China(Grant No.2012RC026)
文摘A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density.
基金Project is supported by the National Natural Science Foundation of China (Grant Nos. 71071013,71001004,71071012,and71131001)the Fundamental Research Funds for the Central Universities,China (Grant No. 2011YJS241)
文摘An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.
基金supported by the National Natural Science Foundation of China(Grant Nos.61322307 and 61233001)
文摘With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xu- anwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians'- visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties.
基金Project(51078086)supported by the National Natural Science Foundation of China
文摘The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.
文摘The paper presents an improved cellular automaton model according to the feature of evacuation near the outlet. We studied friction and turning factors that affect pedestrian evacuation speed. By using mathematical methods to derive expressions of friction function and turning function. The average pedestrian outflow of the simulation that includes the effect of both the frictional function and the turning function agrees well with experiment result. On the contrary, the simulation results that only include the effect of the frictional function are not corresponding to the experiment results well. Simulation results show that friction and turning can not be ignored. By analyzing the simulation results, it verified that the model can accurately reflect the actual evacuation process and has practical value.
基金Partially Supported by Grant-in-Aid for Scientific Research(A)(No.25240004)
文摘This paper shows the method of estimating spatiotemporal distribution of pedestrians by using watch cameras. We estimate the distribution without tracking technology, with pedestrian's privacy protected and in Umeda underground mall. Lately spatiotemporal distribution of pedestrians has being increasingly important in the field of urban planning, disaster prevention planning, marketing and so on. Although many researchers have tried to capture the information of location as dealing with some sensors, some problems still remain, such as the investment of sensors, the restriction of the number of people who has the device they are able to capture. From such background, we develop an original labelling algorithm and estimate the spatiotemporal distribution of pedestrians and the information of the passing time and the direction of pedestrians from sequential images of a watch camera.
文摘The crowd evacuation of pairs of pedestrians(i.e.pairs consisting of a parent and a child)is numerically investigated.Here,it is assumed that all pedestrians have their own partners,and move randomly inside the bounded domain of the right-hand room as an initial state.All pedestrians start their evacuations after they contact their partners.The evacuations are completed by the transfer of all the pairs from the right-hand room to the left-hand room through an exit.A frozen swarm tends to appear in the right-hand room as the total number of pedestrians increases.The frozen swarm moves without changing its form,unless it is dissolved by a strong collision with a pair of pedestrians that comes back from the left-hand room by accident.Finally,the evacuation speed also depends on the area of the Escape Zone,whereas an obstacle placed in front of an exit also changes the speed of the evacuation in accordance with the type of motion of the children.
基金supported by the National Natural Science Foundation of China under Grant No.61203142the Natural Science Foundation of Hebei Province under Grant No.F2014202206the Project-Sponsored by SRF for ROCS,SEM
文摘A multi-agent evacuation model is proposed in this paper to simulate the pedestrian evacuation process in stadium with or without obstacles.The authors give a multi-agent individual decisionmaking framework,in which the action direction of each pedestrian(called agent) is affected by the distance of the agent to the exits and the occupant number and density within the view field of the agent.Different from the existing results,the authors divide all the pedestrians in the stadium into four classes:Young male,young female,old male,and old female.In evacuation process,the weighting that affects individual decision-making between each class of agents is different.In the simulation,the authors present the effects of obstacles,crowd distribution and the exit position in evacuation process.Simulation results show that the proposed model can reproduce exactly the real evacuation process in stadium.Therefore,this method might be useful to assess public buildings design.