It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on...It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on the evaluation and potential development of CAVs technology;however, pedestrians and bicyclists, as two essential and important modes of the road users have seen little to no coverage. In response to the need for analyzing the impact of CAVs on non-motorized transportation, this paper develops a new model for the evaluation of the Level of Service (LOS) for pedestrians in a CAVs environment based on the Highway Capacity Manual (HCM). The HCM provides a methodology to assess the level of service for pedestrians and bicyclists on various types of intersections in urban areas. Five scenarios were created for simulation via VISSIM (a software) that corresponds to the different proportions of the CAVs and different signal systems in a typical traffic environment. Alternatively, the Surrogate Safety Assessment Model (SSAM) was selected for analyzing the safety performance of the five scenarios. Through computing and analyzing the results of simulation and SSAM, the latter portion of this paper focuses on the development of a new model for evaluating pedestrian LOS in urban areas which are based upon HCM standards which are suitable for CAVs environments. The results of this study are intended to inform the future efforts of engineers and/or policymakers and to provide them with a tool to conduct a comparison of capacity and LOS related to the impact of CAVs on pedestrians during the process of a transportation system transition to CAVs.展开更多
Pedestrian level of service(PLOS)is an important measure of performance in the analysis of existing pedestrian crosswalk conditions.Many researchers have developed PLOS models based on pedestrian delay,turning vehicle...Pedestrian level of service(PLOS)is an important measure of performance in the analysis of existing pedestrian crosswalk conditions.Many researchers have developed PLOS models based on pedestrian delay,turning vehicle effect,etc.,using the conventional regression method.However,these factors may not effectively reflect the pedestrians'perception of safety while crossing the crosswalk.The conventional regression method has failed to estimate accurate PLOS because of the primary assumption of an arbitrary probability distribution and vagueness in the input data.Moreover,PLOS categories in existing studies are based on rigid threshold values and the boundaries that are not well defined.Therefore,it is an important attempt to develop a PLOS model with respect to pedestrian safety,convenience,and efficiency at signalized intersections.For this purpose,a video-graphic and user perception surveys were conducted at selected nine signalized intersections in Mumbai,India.The data such as pedestrian,traffic,and geometric characteristics were extracted,and significant variables were identified using Pearson correlation analysis.A consistent and statistically calibrated PLOS model was developed using fuzzy linear regression analysis.PLOS was categorized into six levels(A–F)based on the predicted user perception score,and threshold values for each level were estimated using the fuzzy c-means clustering technique.The developed PLOS model and threshold values were validated with the fieldobserved data.Statistical performance tests were conducted and the results provided more accurate and reliable solutions.In conclusion,this study provides a feasible alternative to measure pedestrian perception-based level of service at signalized intersections.The developed PLOS model and threshold values would be useful for planning and designing pedestrian facilities and also in evaluating and improving the existing conditions of pedestrian facilities at signalized intersections.展开更多
文摘It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on the evaluation and potential development of CAVs technology;however, pedestrians and bicyclists, as two essential and important modes of the road users have seen little to no coverage. In response to the need for analyzing the impact of CAVs on non-motorized transportation, this paper develops a new model for the evaluation of the Level of Service (LOS) for pedestrians in a CAVs environment based on the Highway Capacity Manual (HCM). The HCM provides a methodology to assess the level of service for pedestrians and bicyclists on various types of intersections in urban areas. Five scenarios were created for simulation via VISSIM (a software) that corresponds to the different proportions of the CAVs and different signal systems in a typical traffic environment. Alternatively, the Surrogate Safety Assessment Model (SSAM) was selected for analyzing the safety performance of the five scenarios. Through computing and analyzing the results of simulation and SSAM, the latter portion of this paper focuses on the development of a new model for evaluating pedestrian LOS in urban areas which are based upon HCM standards which are suitable for CAVs environments. The results of this study are intended to inform the future efforts of engineers and/or policymakers and to provide them with a tool to conduct a comparison of capacity and LOS related to the impact of CAVs on pedestrians during the process of a transportation system transition to CAVs.
文摘Pedestrian level of service(PLOS)is an important measure of performance in the analysis of existing pedestrian crosswalk conditions.Many researchers have developed PLOS models based on pedestrian delay,turning vehicle effect,etc.,using the conventional regression method.However,these factors may not effectively reflect the pedestrians'perception of safety while crossing the crosswalk.The conventional regression method has failed to estimate accurate PLOS because of the primary assumption of an arbitrary probability distribution and vagueness in the input data.Moreover,PLOS categories in existing studies are based on rigid threshold values and the boundaries that are not well defined.Therefore,it is an important attempt to develop a PLOS model with respect to pedestrian safety,convenience,and efficiency at signalized intersections.For this purpose,a video-graphic and user perception surveys were conducted at selected nine signalized intersections in Mumbai,India.The data such as pedestrian,traffic,and geometric characteristics were extracted,and significant variables were identified using Pearson correlation analysis.A consistent and statistically calibrated PLOS model was developed using fuzzy linear regression analysis.PLOS was categorized into six levels(A–F)based on the predicted user perception score,and threshold values for each level were estimated using the fuzzy c-means clustering technique.The developed PLOS model and threshold values were validated with the fieldobserved data.Statistical performance tests were conducted and the results provided more accurate and reliable solutions.In conclusion,this study provides a feasible alternative to measure pedestrian perception-based level of service at signalized intersections.The developed PLOS model and threshold values would be useful for planning and designing pedestrian facilities and also in evaluating and improving the existing conditions of pedestrian facilities at signalized intersections.