The pedestrian protection technology must be used in automotive design if China-made automotives want to compete and grow strong in the world in the future. In this paper, a CAE simulation analysis is made for a domes...The pedestrian protection technology must be used in automotive design if China-made automotives want to compete and grow strong in the world in the future. In this paper, a CAE simulation analysis is made for a domestic sedan car hood to check whether it meet the pedestrian safety protection laws and regulations. Results show that the original car cannot meet the demands of the rules. In order to meet the standards of the pedustrian protection rules, the car hood should undergo structural improvements. Tested again by CAE simulation analysis, the car after a series of improved design can reached the 3-star class EuroNCAP( Euro New Car Assessment Program)standard of the car pedestrian safety protection laws and regulations.展开更多
Decreasing the death toll of pedestrians in traffic accidents is one of the most urgent tasks to be solved all over the world. This paper describes the prediction of pedestrian injuries for the TRL legform impactor us...Decreasing the death toll of pedestrians in traffic accidents is one of the most urgent tasks to be solved all over the world. This paper describes the prediction of pedestrian injuries for the TRL legform impactor using MATLAB. The TRL legform impactor consists of three parts: a femur, a tibia, and a ligament connecting them. The impactor was physically modelled with springs, dampers and two masses as a dynamic model. The impactor behaves in a translational and rotational motion during the collision with a vehicle. The behavior of the impactor during the crash event was captured by a high speed camera and is regarded as the four-degree-of-freedom system in terms of translational and rotational motions. Pedestrian injuries are evaluated by three physical quantities indexes: the acceleration of the tibia, both the displacement and the bending angle between the femur and the tibia. The physical model for the impactor was expressed mathematically by differential equations. In the case of modelling, the ligament connecting both the femur and the tibia in particular plays an important role. Shear forces were applied to the ligament in translational motions and the bending moments in rotational motion. Differential equations were expressed in the form of a state equation and an output equation by MATLAB. Numerical solutions were obtained by a block diagram with Simulink. As a result, it was found that the predicted injuries agree quite well with their experimented data in terms of acceleration, displacement, and the bending angle mentioned above.展开更多
为了车辆顺利出口东盟,根据新车研发的需要,以东盟国家新车评价体系:ASEAN-NCAP(New Car Assessment Program for Southeast Asian Countries)下腿型保护满足限值为目标,搭建柔性腿(Flexible Pedestrain Legform Impactor,Flex-PLI)碰...为了车辆顺利出口东盟,根据新车研发的需要,以东盟国家新车评价体系:ASEAN-NCAP(New Car Assessment Program for Southeast Asian Countries)下腿型保护满足限值为目标,搭建柔性腿(Flexible Pedestrain Legform Impactor,Flex-PLI)碰撞有限元模型并计算求解。针对车辆设计存在的问题,提出改进方案并通过仿真验证可行,最后通过实车验证测试,试验结果验证了仿真的可靠性,为行人小腿保护开发积累了经验。展开更多
Though the bumper of a vehicle plays a major role in protecting the vehicle body against damage in low speed impacts, many bumpers, particularly in large vehicles, are too stiff for pedestrian protection. In designing...Though the bumper of a vehicle plays a major role in protecting the vehicle body against damage in low speed impacts, many bumpers, particularly in large vehicles, are too stiff for pedestrian protection. In designing a bumper for an automobile, pedestrian protection is as important as bumper energy absorption in low speed collisions. To prevent lower extremity injuries in car-pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injury is caused by these loadings. The present work was focused on gaining more insight into the injury mechanisms leading to both ligament damage and bone fracture during bumper-pedestrian collisions. The European Enhanced Vehicle-safety Committee (EEVC) legform impactor model was introduced and validated against EEVCAVG17 criteria. The collision mechanism between a bumper and this legform impactor was investigated numerically using LS-DYNA software. To identify the effect of the bumper beam material on leg injuries, four analyses were performed on bumpers that had the same assembly but were made from different materials.展开更多
文摘The pedestrian protection technology must be used in automotive design if China-made automotives want to compete and grow strong in the world in the future. In this paper, a CAE simulation analysis is made for a domestic sedan car hood to check whether it meet the pedestrian safety protection laws and regulations. Results show that the original car cannot meet the demands of the rules. In order to meet the standards of the pedustrian protection rules, the car hood should undergo structural improvements. Tested again by CAE simulation analysis, the car after a series of improved design can reached the 3-star class EuroNCAP( Euro New Car Assessment Program)standard of the car pedestrian safety protection laws and regulations.
文摘Decreasing the death toll of pedestrians in traffic accidents is one of the most urgent tasks to be solved all over the world. This paper describes the prediction of pedestrian injuries for the TRL legform impactor using MATLAB. The TRL legform impactor consists of three parts: a femur, a tibia, and a ligament connecting them. The impactor was physically modelled with springs, dampers and two masses as a dynamic model. The impactor behaves in a translational and rotational motion during the collision with a vehicle. The behavior of the impactor during the crash event was captured by a high speed camera and is regarded as the four-degree-of-freedom system in terms of translational and rotational motions. Pedestrian injuries are evaluated by three physical quantities indexes: the acceleration of the tibia, both the displacement and the bending angle between the femur and the tibia. The physical model for the impactor was expressed mathematically by differential equations. In the case of modelling, the ligament connecting both the femur and the tibia in particular plays an important role. Shear forces were applied to the ligament in translational motions and the bending moments in rotational motion. Differential equations were expressed in the form of a state equation and an output equation by MATLAB. Numerical solutions were obtained by a block diagram with Simulink. As a result, it was found that the predicted injuries agree quite well with their experimented data in terms of acceleration, displacement, and the bending angle mentioned above.
文摘为了车辆顺利出口东盟,根据新车研发的需要,以东盟国家新车评价体系:ASEAN-NCAP(New Car Assessment Program for Southeast Asian Countries)下腿型保护满足限值为目标,搭建柔性腿(Flexible Pedestrain Legform Impactor,Flex-PLI)碰撞有限元模型并计算求解。针对车辆设计存在的问题,提出改进方案并通过仿真验证可行,最后通过实车验证测试,试验结果验证了仿真的可靠性,为行人小腿保护开发积累了经验。
文摘Though the bumper of a vehicle plays a major role in protecting the vehicle body against damage in low speed impacts, many bumpers, particularly in large vehicles, are too stiff for pedestrian protection. In designing a bumper for an automobile, pedestrian protection is as important as bumper energy absorption in low speed collisions. To prevent lower extremity injuries in car-pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injury is caused by these loadings. The present work was focused on gaining more insight into the injury mechanisms leading to both ligament damage and bone fracture during bumper-pedestrian collisions. The European Enhanced Vehicle-safety Committee (EEVC) legform impactor model was introduced and validated against EEVCAVG17 criteria. The collision mechanism between a bumper and this legform impactor was investigated numerically using LS-DYNA software. To identify the effect of the bumper beam material on leg injuries, four analyses were performed on bumpers that had the same assembly but were made from different materials.