Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonom...Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonomy(CST).However,delineating the STR of China remains a challenge due to the difficulties in accurately estimating MAST50.The objectives of this study were to explore environmental factors that influence the spatial variation of MAST50 and generate an STR map for China.Soil temperature measurements at 40 and 80 cm depth were collected from 386 National Meteorological Stations in China during 1971–2000.The MAST50 was calculated as the average mean annual soil temperature(MAST)from 1971–2000 between 40 and 80 cm depths.In addition,2048 mean annual air temperature(MAAT)measurements from 1971 to 2000 were collected from the National Meteorological Stations across China.A zonal pedotransfer function(PTF)was developed based on the ensemble linear regression kriging model to predict the MAST50 in three topographic steps of China.The results showed that MAAT was the most important variable related to the variation of MAST50.The zonal PTF was evaluated with a 10%validation dataset with a mean absolute error(MAE)of 0.66°C and root mean square error(RMSE)of 0.78°C,which were smaller than the unified model with MAE of 0.83°C and RMSE of 0.96°C,respectively.This study demonstrated that the zonal PTF helped improve the accuracy of the predicted MAST50 map.Based on the prediction results,an STR map across China was generated to provide a consistent scientific base for the improvement and application of CST and land use support.展开更多
A high degree of uncertainty with regard to soil parameterisation limits the significance of physically-based simulation of distributed flood control measures, which affect the runoff generation process, such as land-...A high degree of uncertainty with regard to soil parameterisation limits the significance of physically-based simulation of distributed flood control measures, which affect the runoff generation process, such as land-use changes or differing soil tillage practices. In this study, the soil measurement data from the hillslope scale at the Scheyern research farm were compared to demonstrate this uncertainty. To account for the spatial variability of soils in the investigation area of Scheyern, different approaches were applied to estimate soil hydraulic properties and saturated hydraulic conductivity, and were compared to field measurements展开更多
In this work, 23 black soil profiles were surveyed and 113 soil samples were collected to determine the field capacity (FC) of the black soil in Northeast China. The effectiveness of three methods measuring FC, the Wi...In this work, 23 black soil profiles were surveyed and 113 soil samples were collected to determine the field capacity (FC) of the black soil in Northeast China. The effectiveness of three methods measuring FC, the Wilcox method (WM), the undisturbed soil pressure plate method (PUM) and the air-dried sieved soil pressure plate method (PDM) were compared to select a suitable laboratory measurement method. Results show that the FC values measured by PDM are greater than those measured by PUM, and the values measured by PUM are greater than those measured by WM. PUM is more suitable for the determination of FC in the study area. One regression equation between PUM and PDM has been established through which undisturbed soil can be replaced by air-dried sieved soil, which is easier to get, to measure FC. FCs vary from 23.50% to 37.00%, with an average of 31.65%, which differ greatly among the 23 black soil profiles. FC is found to be significantly positively correlated with the silt content, clay content and bulk density of the soil, but significantly negatively correlated with the sand content. An empirical pedotransfer function is established to estimate the FC using available soil physical and chemical properties.展开更多
The remaining phosphorus (Prem), P concentration that remains in solution after shaking soil with 0.01 mol L-1 CaCl2 containing 60μg mL-1 P, is a very useful index for studies related to the chemistry of variable cha...The remaining phosphorus (Prem), P concentration that remains in solution after shaking soil with 0.01 mol L-1 CaCl2 containing 60μg mL-1 P, is a very useful index for studies related to the chemistry of variable charge soils. Although the Prem determination is a simple procedure, the possibility of estimating accurate values of this index from easily and/or routinely determined soil properties can be very useful for practical purposes. The present research evaluated the Prem estimation through multiple regression analysis in which routinely determined soil chemical data, soil clay content and soil pH measured in 1 mol L-1 NaF (pHNaF) figured as Prem predictor variables. The Prem can be estimated with acceptable accuracy using the above-mentioned approach, and pHNaF not only substitutes for clay content as a predictor variable but also confers more accuracy to the Prem estimates.展开更多
Soil erosion has been identified as one of the most destructive forms of land degradation,posing a threat to the sustainability of global economic,social and environmental systems.This underscores the need for sustain...Soil erosion has been identified as one of the most destructive forms of land degradation,posing a threat to the sustainability of global economic,social and environmental systems.This underscores the need for sustainable land management that takes erosion control and prevention into consideration.This requires the use of state-of-the-art erosion prediction models.The models often require extensive input of detailed spatial and temporal data,some of which are not readily available in many developing countries,particularly detailed soil data.The soil dataset Global Gridded Soil Information(SoilGrids)could potentially fill the data gap.Nevertheless,its value and accuracy for soil erosion modelling in the humid tropics is still unknown,necessitating the need to assess its value vis-à-vis field-based data.The major objective of this study was to conduct a comparative assessment of the value of SoilGrids and field-based soil data for estimating soil loss.Soil samples were collected from five physiographic positions(summit,shoulder,back slope,foot slope,and toe slope)using the soil catena approach.Samples were collected using a 5-cm steel sample ring(undisturbed)and a spade(disturbed).Data of the landform,predominant vegetation types,canopy cover,average plant height,land use,soil depth,shear strength,and soil color were recorded for each site.The soil samples were subjected to laboratory analysis for saturated hydraulic conductivity,bulk density,particle size distribution,and organic matter content.Pedotransfer functions were applied on the SoilGrids and field-based data to generate soil hydrological properties.The resultant field-based data were compared with the SoilGrids data for corresponding points/areas to determine the potential similarities of the two datasets.Both datasets were then used as inputs for soil erosion assessment using the revised Morgan-Morgan-Finney model.The results from both datasets were again compared to determine the degree of similarity.The results showed that with respect to point-based comparison,both datasets were significantly different.At the hillslope delineation level,the field-based data still consistently had a greater degree of variability,but the hillslope averages were not significantly different for both datasets.Similar results were recorded with the soil loss parameters generated from both datasets;point-based comparison showed that both datasets were significantly different,whereas the reverse was true for parcel/area-based comparison.SoilGrids data are certainly useful,especially where soil data are lacking;the utility of this dataset is,however,dependent on the scale of operation or the extent of detail required.When detailed,site-specific data are required,SoilGrids may not be a good alternative to soil survey data in the humid tropics.On the other hand,if the average soil properties of a region,area,or land parcel are required for the implementation of a particular project,plan,or program,SoilGrids data can be a very valuable alternative to soil survey data.展开更多
Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on...Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.展开更多
基金funded by the National Key Basic Research Special Foundation of China(2021FY100405)the National Natural Science Foundation of China(U20A20114,42201069 and 42077002)the Fundamental Research Funds for Central Non-profit Scientific Institution,China(1610132018012).
文摘Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonomy(CST).However,delineating the STR of China remains a challenge due to the difficulties in accurately estimating MAST50.The objectives of this study were to explore environmental factors that influence the spatial variation of MAST50 and generate an STR map for China.Soil temperature measurements at 40 and 80 cm depth were collected from 386 National Meteorological Stations in China during 1971–2000.The MAST50 was calculated as the average mean annual soil temperature(MAST)from 1971–2000 between 40 and 80 cm depths.In addition,2048 mean annual air temperature(MAAT)measurements from 1971 to 2000 were collected from the National Meteorological Stations across China.A zonal pedotransfer function(PTF)was developed based on the ensemble linear regression kriging model to predict the MAST50 in three topographic steps of China.The results showed that MAAT was the most important variable related to the variation of MAST50.The zonal PTF was evaluated with a 10%validation dataset with a mean absolute error(MAE)of 0.66°C and root mean square error(RMSE)of 0.78°C,which were smaller than the unified model with MAE of 0.83°C and RMSE of 0.96°C,respectively.This study demonstrated that the zonal PTF helped improve the accuracy of the predicted MAST50 map.Based on the prediction results,an STR map across China was generated to provide a consistent scientific base for the improvement and application of CST and land use support.
基金supported by the German Research Foundation (DFG)
文摘A high degree of uncertainty with regard to soil parameterisation limits the significance of physically-based simulation of distributed flood control measures, which affect the runoff generation process, such as land-use changes or differing soil tillage practices. In this study, the soil measurement data from the hillslope scale at the Scheyern research farm were compared to demonstrate this uncertainty. To account for the spatial variability of soils in the investigation area of Scheyern, different approaches were applied to estimate soil hydraulic properties and saturated hydraulic conductivity, and were compared to field measurements
基金Under the auspices of National Natural Science Foundation of China(No.40671111)Major State Basic Research Development Program of China(No.2007CB407203)
文摘In this work, 23 black soil profiles were surveyed and 113 soil samples were collected to determine the field capacity (FC) of the black soil in Northeast China. The effectiveness of three methods measuring FC, the Wilcox method (WM), the undisturbed soil pressure plate method (PUM) and the air-dried sieved soil pressure plate method (PDM) were compared to select a suitable laboratory measurement method. Results show that the FC values measured by PDM are greater than those measured by PUM, and the values measured by PUM are greater than those measured by WM. PUM is more suitable for the determination of FC in the study area. One regression equation between PUM and PDM has been established through which undisturbed soil can be replaced by air-dried sieved soil, which is easier to get, to measure FC. FCs vary from 23.50% to 37.00%, with an average of 31.65%, which differ greatly among the 23 black soil profiles. FC is found to be significantly positively correlated with the silt content, clay content and bulk density of the soil, but significantly negatively correlated with the sand content. An empirical pedotransfer function is established to estimate the FC using available soil physical and chemical properties.
基金Project supported by the State of Sao Paulo Research Foundation-FAPESP, Brazil (No. 98/01502-8).
文摘The remaining phosphorus (Prem), P concentration that remains in solution after shaking soil with 0.01 mol L-1 CaCl2 containing 60μg mL-1 P, is a very useful index for studies related to the chemistry of variable charge soils. Although the Prem determination is a simple procedure, the possibility of estimating accurate values of this index from easily and/or routinely determined soil properties can be very useful for practical purposes. The present research evaluated the Prem estimation through multiple regression analysis in which routinely determined soil chemical data, soil clay content and soil pH measured in 1 mol L-1 NaF (pHNaF) figured as Prem predictor variables. The Prem can be estimated with acceptable accuracy using the above-mentioned approach, and pHNaF not only substitutes for clay content as a predictor variable but also confers more accuracy to the Prem estimates.
文摘Soil erosion has been identified as one of the most destructive forms of land degradation,posing a threat to the sustainability of global economic,social and environmental systems.This underscores the need for sustainable land management that takes erosion control and prevention into consideration.This requires the use of state-of-the-art erosion prediction models.The models often require extensive input of detailed spatial and temporal data,some of which are not readily available in many developing countries,particularly detailed soil data.The soil dataset Global Gridded Soil Information(SoilGrids)could potentially fill the data gap.Nevertheless,its value and accuracy for soil erosion modelling in the humid tropics is still unknown,necessitating the need to assess its value vis-à-vis field-based data.The major objective of this study was to conduct a comparative assessment of the value of SoilGrids and field-based soil data for estimating soil loss.Soil samples were collected from five physiographic positions(summit,shoulder,back slope,foot slope,and toe slope)using the soil catena approach.Samples were collected using a 5-cm steel sample ring(undisturbed)and a spade(disturbed).Data of the landform,predominant vegetation types,canopy cover,average plant height,land use,soil depth,shear strength,and soil color were recorded for each site.The soil samples were subjected to laboratory analysis for saturated hydraulic conductivity,bulk density,particle size distribution,and organic matter content.Pedotransfer functions were applied on the SoilGrids and field-based data to generate soil hydrological properties.The resultant field-based data were compared with the SoilGrids data for corresponding points/areas to determine the potential similarities of the two datasets.Both datasets were then used as inputs for soil erosion assessment using the revised Morgan-Morgan-Finney model.The results from both datasets were again compared to determine the degree of similarity.The results showed that with respect to point-based comparison,both datasets were significantly different.At the hillslope delineation level,the field-based data still consistently had a greater degree of variability,but the hillslope averages were not significantly different for both datasets.Similar results were recorded with the soil loss parameters generated from both datasets;point-based comparison showed that both datasets were significantly different,whereas the reverse was true for parcel/area-based comparison.SoilGrids data are certainly useful,especially where soil data are lacking;the utility of this dataset is,however,dependent on the scale of operation or the extent of detail required.When detailed,site-specific data are required,SoilGrids may not be a good alternative to soil survey data in the humid tropics.On the other hand,if the average soil properties of a region,area,or land parcel are required for the implementation of a particular project,plan,or program,SoilGrids data can be a very valuable alternative to soil survey data.
文摘Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.