The current advancement in cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT)transformed the traditional healthcare system into smart healthcare.Healthcare services could be enhanced by incorp...The current advancement in cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT)transformed the traditional healthcare system into smart healthcare.Healthcare services could be enhanced by incorporating key techniques like AI and IoT.The convergence of AI and IoT provides distinct opportunities in the medical field.Fall is regarded as a primary cause of death or post-traumatic complication for the ageing population.Therefore,earlier detection of older person falls in smart homes is required to improve the survival rate of an individual or provide the necessary support.Lately,the emergence of IoT,AI,smartphones,wearables,and so on making it possible to design fall detection(FD)systems for smart home care.This article introduces a new Teamwork Optimization with Deep Learning based Fall Detection for IoT Enabled Smart Healthcare Systems(TWODLFDSHS).The TWODL-FDSHS technique’s goal is to detect fall events for a smart healthcare system.Initially,the presented TWODL-FDSHS technique exploits IoT devices for the data collection process.Next,the TWODLFDSHS technique applies the TWO with Capsule Network(CapsNet)model for feature extraction.At last,a deep random vector functional link network(DRVFLN)with an Adam optimizer is exploited for fall event detection.A wide range of simulations took place to exhibit the enhanced performance of the presentedTWODL-FDSHS technique.The experimental outcomes stated the enhancements of the TWODL-FDSHS method over other models with increased accuracy of 98.30%on the URFD dataset.展开更多
Pair programming has been widely acclaimed the best way to go in computer programming. Recently, collaboration involving more subjects has been shown to produce better results in programming environments. However, the...Pair programming has been widely acclaimed the best way to go in computer programming. Recently, collaboration involving more subjects has been shown to produce better results in programming environments. However, the optimum group size needed for the collaboration has not been adequately addressed. This paper seeks to inculcate and acquaint the students involved in the study with the spirit of team work in software projects and to empirically determine the effective (optimum) team size that may be desirable in programming/learning real life environments. Two different experiments were organized and conducted. Parameters for determining the optimal team size were formulated. Volunteered participants of different genders were randomly grouped into five parallel teams of different sizes ranging from 1 to 5 in the first experiment. Each team size was replicated six times. The second experiment involved teams of same gender compositions (males or females) in different sizes. The times (efforts) for problem analysis and coding as well as compile-time errors (bugs) were recorded for each team size. The effectiveness was finally analyzed for the teams. The study shows that collaboration is highly beneficial to new learners of computer programming. They easily grasp the programming concepts when the learning is done in the company of others. The study also demonstrates that the optimum team size that may be adopted in a collaborative learning of computer programming is four.展开更多
With the continuous development of the times, the connotation of education is constantly advancing with the times. Therefore, English teaching team management can not be ignored with the aim to serving education syste...With the continuous development of the times, the connotation of education is constantly advancing with the times. Therefore, English teaching team management can not be ignored with the aim to serving education system better and adapting to the trends of the times. This paper aims to exploring the specific management measures and methods of private college English teaching team based on the theory of Learning Organization.展开更多
The most important goal in civics education is to ensure that each citizen has a good understanding of ethics and moral behavior, and thus stresses the constant link between knowledge and practice. In this context, to...The most important goal in civics education is to ensure that each citizen has a good understanding of ethics and moral behavior, and thus stresses the constant link between knowledge and practice. In this context, to increase understanding of civics education for being able to create the best generation and condition in the future life, study on this issue is becoming a very crucial manner. In general, methods like discussion and dialogue are used to allow students to express themselves. However, cooperative learning in particular addresses many of the needs and concerns facing by educational systems and Team Game Tournament (TGT) method is one of the preferable methods of cooperative learning. This study was aiming to increase civics learning achievements by using cooperative learning based on TGT method on secondary school students of Jatisari of Indonesia. The action research procedure was also used so as to be able to evaluate the influent, impact, and result of TGT. Accordingly, cooperative learning with TGT method has successfully given positive contribution to increasing student learning civics achievement.展开更多
At the present stage of development,colleges and universities in the training of students and management of student team construction there are some problems,although many colleges and universities to take the corresp...At the present stage of development,colleges and universities in the training of students and management of student team construction there are some problems,although many colleges and universities to take the corresponding management plan,effectively improve the quality of students,but educators still need to face how to cultivate a mature student team in a short time.In this regard,combining Dewey’s“experiential learning”and Cooper’s experiential learning theory,the paper applies experiential learning theory and practice to the training of college student team construction,aiming at improving the overall quality of the student team effectively,so as to promote the comprehensive development of students.展开更多
Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments.However,simulations of different learning environments in previous research show that after millions of timesteps ...Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments.However,simulations of different learning environments in previous research show that after millions of timesteps of successful training,an intrinsically motivated agent may learn to act in ways unintended by the designer.This potential for unintended actions of autonomous exploring agents poses threats to the environment and humans if operated in the real world.We investigated this topic by using Unity’s MachineLearningAgent Toolkit(ML-Agents)implementation of the Proximal Policy Optimization(PPO)algorithm with the Intrinsic Curiosity Module(ICM)to train autonomous exploring agents in three learning environments.We demonstrate that ICM,although designed to assist agent navigation in environments with sparse reward generation,increasing gradually as a tool for purposely training misbehaving agent in significantly less than 1 million timesteps.We present the following achievements:1)experiments designed to cause agents to act undesirably,2)a metric for gauging how well an agent achieves its goal without collisions,and 3)validation of PPO best practices.Then,we used optimized methods to improve the agent’s performance and reduce collisions within the same environments.These achievements help further our understanding of the significance of monitoring training statistics during reinforcement learning for determining how humans can intervene to improve agent safety and performance.展开更多
The gamification of learning has proven educational benefits, especially in secondary education. Studies confirm the successful engagement of students with improved time on task, motivation and learning outcomes. At t...The gamification of learning has proven educational benefits, especially in secondary education. Studies confirm the successful engagement of students with improved time on task, motivation and learning outcomes. At the same time, there remains little research on games and learning at the postsecondary level of education where traditional pedagogies remain the norm. Studies that have been conducted remain almost exclusively restricted to science programs, including medicine and engineering. Moreover, postsecondary subject-matter experts who have created their own gamified experiences often are forced to do so on an ad hoc basis either on their own, teaching themselves game engines, or with irregular support from experts in the field. But to ensure a well-designed, developed, and high-quality educational experience that leads to desired outcomes for a field, a sustainable infrastructure needs to be developed in institutions that have (or can partner with) others that have an established game design program. Moreover, such a design-based learning approach can be embedded within an existing studio model to help educate participants while producing an educational product. As such, this qualitative case study provides an example of the process of operationalizing a game design studio from pre-production through post-production, drawing from the design and development of the educational video game The Museum of the Lost VR (2022). The results, resources, and classification system presented are scalable and provide models for different sized institutions. Methods to develop a sustainable infrastructure are presented to ensure interdisciplinary partnerships across departments and institutions with game design programs to collaborate and create educational experiences that optimize user experience and learning outcomes.展开更多
基金The Deanship of Scientific Research (DSR)at King Abdulaziz University (KAU),Jeddah,Saudi Arabia has funded this project,under grant no.KEP-4-120-42.
文摘The current advancement in cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT)transformed the traditional healthcare system into smart healthcare.Healthcare services could be enhanced by incorporating key techniques like AI and IoT.The convergence of AI and IoT provides distinct opportunities in the medical field.Fall is regarded as a primary cause of death or post-traumatic complication for the ageing population.Therefore,earlier detection of older person falls in smart homes is required to improve the survival rate of an individual or provide the necessary support.Lately,the emergence of IoT,AI,smartphones,wearables,and so on making it possible to design fall detection(FD)systems for smart home care.This article introduces a new Teamwork Optimization with Deep Learning based Fall Detection for IoT Enabled Smart Healthcare Systems(TWODLFDSHS).The TWODL-FDSHS technique’s goal is to detect fall events for a smart healthcare system.Initially,the presented TWODL-FDSHS technique exploits IoT devices for the data collection process.Next,the TWODLFDSHS technique applies the TWO with Capsule Network(CapsNet)model for feature extraction.At last,a deep random vector functional link network(DRVFLN)with an Adam optimizer is exploited for fall event detection.A wide range of simulations took place to exhibit the enhanced performance of the presentedTWODL-FDSHS technique.The experimental outcomes stated the enhancements of the TWODL-FDSHS method over other models with increased accuracy of 98.30%on the URFD dataset.
文摘Pair programming has been widely acclaimed the best way to go in computer programming. Recently, collaboration involving more subjects has been shown to produce better results in programming environments. However, the optimum group size needed for the collaboration has not been adequately addressed. This paper seeks to inculcate and acquaint the students involved in the study with the spirit of team work in software projects and to empirically determine the effective (optimum) team size that may be desirable in programming/learning real life environments. Two different experiments were organized and conducted. Parameters for determining the optimal team size were formulated. Volunteered participants of different genders were randomly grouped into five parallel teams of different sizes ranging from 1 to 5 in the first experiment. Each team size was replicated six times. The second experiment involved teams of same gender compositions (males or females) in different sizes. The times (efforts) for problem analysis and coding as well as compile-time errors (bugs) were recorded for each team size. The effectiveness was finally analyzed for the teams. The study shows that collaboration is highly beneficial to new learners of computer programming. They easily grasp the programming concepts when the learning is done in the company of others. The study also demonstrates that the optimum team size that may be adopted in a collaborative learning of computer programming is four.
文摘With the continuous development of the times, the connotation of education is constantly advancing with the times. Therefore, English teaching team management can not be ignored with the aim to serving education system better and adapting to the trends of the times. This paper aims to exploring the specific management measures and methods of private college English teaching team based on the theory of Learning Organization.
文摘The most important goal in civics education is to ensure that each citizen has a good understanding of ethics and moral behavior, and thus stresses the constant link between knowledge and practice. In this context, to increase understanding of civics education for being able to create the best generation and condition in the future life, study on this issue is becoming a very crucial manner. In general, methods like discussion and dialogue are used to allow students to express themselves. However, cooperative learning in particular addresses many of the needs and concerns facing by educational systems and Team Game Tournament (TGT) method is one of the preferable methods of cooperative learning. This study was aiming to increase civics learning achievements by using cooperative learning based on TGT method on secondary school students of Jatisari of Indonesia. The action research procedure was also used so as to be able to evaluate the influent, impact, and result of TGT. Accordingly, cooperative learning with TGT method has successfully given positive contribution to increasing student learning civics achievement.
文摘At the present stage of development,colleges and universities in the training of students and management of student team construction there are some problems,although many colleges and universities to take the corresponding management plan,effectively improve the quality of students,but educators still need to face how to cultivate a mature student team in a short time.In this regard,combining Dewey’s“experiential learning”and Cooper’s experiential learning theory,the paper applies experiential learning theory and practice to the training of college student team construction,aiming at improving the overall quality of the student team effectively,so as to promote the comprehensive development of students.
基金This work was partly supported by the United States Air Force Office of Scientific Research(AFOSR)contract FA9550-22-1-0268 awarded to KHA,https://www.afrl.af.mil/AFOSR/.The contract is entitled:“Investigating Improving Safety of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,”and in part by Jackson State University。
文摘Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments.However,simulations of different learning environments in previous research show that after millions of timesteps of successful training,an intrinsically motivated agent may learn to act in ways unintended by the designer.This potential for unintended actions of autonomous exploring agents poses threats to the environment and humans if operated in the real world.We investigated this topic by using Unity’s MachineLearningAgent Toolkit(ML-Agents)implementation of the Proximal Policy Optimization(PPO)algorithm with the Intrinsic Curiosity Module(ICM)to train autonomous exploring agents in three learning environments.We demonstrate that ICM,although designed to assist agent navigation in environments with sparse reward generation,increasing gradually as a tool for purposely training misbehaving agent in significantly less than 1 million timesteps.We present the following achievements:1)experiments designed to cause agents to act undesirably,2)a metric for gauging how well an agent achieves its goal without collisions,and 3)validation of PPO best practices.Then,we used optimized methods to improve the agent’s performance and reduce collisions within the same environments.These achievements help further our understanding of the significance of monitoring training statistics during reinforcement learning for determining how humans can intervene to improve agent safety and performance.
文摘The gamification of learning has proven educational benefits, especially in secondary education. Studies confirm the successful engagement of students with improved time on task, motivation and learning outcomes. At the same time, there remains little research on games and learning at the postsecondary level of education where traditional pedagogies remain the norm. Studies that have been conducted remain almost exclusively restricted to science programs, including medicine and engineering. Moreover, postsecondary subject-matter experts who have created their own gamified experiences often are forced to do so on an ad hoc basis either on their own, teaching themselves game engines, or with irregular support from experts in the field. But to ensure a well-designed, developed, and high-quality educational experience that leads to desired outcomes for a field, a sustainable infrastructure needs to be developed in institutions that have (or can partner with) others that have an established game design program. Moreover, such a design-based learning approach can be embedded within an existing studio model to help educate participants while producing an educational product. As such, this qualitative case study provides an example of the process of operationalizing a game design studio from pre-production through post-production, drawing from the design and development of the educational video game The Museum of the Lost VR (2022). The results, resources, and classification system presented are scalable and provide models for different sized institutions. Methods to develop a sustainable infrastructure are presented to ensure interdisciplinary partnerships across departments and institutions with game design programs to collaborate and create educational experiences that optimize user experience and learning outcomes.