This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly t...This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly task is carried out by an industrial robot in a flexible production system.First,the depth image is thresholded according to the depth data of the workpiece surface so as to filter out the background interference.Second,a series of image processing and the feature recognition algorithms are executed to extract the outer contour features and locate the center point position.This image information,fed by the vision system,will drive the robot to achieve the positioning,approximately.Finally,the Hough circle detection algorithm is used to extract the features and the relevant parameters of the circular hole where the assembly would be done,on the color image,for accurate positioning.The experimental result shows that the positioning accuracy of this method is between 0.6-1.2 mm,in the used experimental system.The entire positioning process need not require complicated calibration,and the method is highly flexible.It is suitable for the automatic assembly tasks with multi-specification or in small batches,in a flexible production system.展开更多
Monte Carlo simulation was applied to Assembly Success Bate (ASK) analyses. ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes, manufacturing tolerances and robot repea...Monte Carlo simulation was applied to Assembly Success Bate (ASK) analyses. ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes, manufacturing tolerances and robot repeatability into account. A statistic arithmetic expression was proposed and deduced in this paper, which offers an alternative method of estimating the accuracy of ASR, without having to repeat the simulations. This statistic method also helps to choose a suitable sample size, if error reduction is desired. Monte Carlo simulation results demonstrated the feasibility of the method.展开更多
文摘This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly task is carried out by an industrial robot in a flexible production system.First,the depth image is thresholded according to the depth data of the workpiece surface so as to filter out the background interference.Second,a series of image processing and the feature recognition algorithms are executed to extract the outer contour features and locate the center point position.This image information,fed by the vision system,will drive the robot to achieve the positioning,approximately.Finally,the Hough circle detection algorithm is used to extract the features and the relevant parameters of the circular hole where the assembly would be done,on the color image,for accurate positioning.The experimental result shows that the positioning accuracy of this method is between 0.6-1.2 mm,in the used experimental system.The entire positioning process need not require complicated calibration,and the method is highly flexible.It is suitable for the automatic assembly tasks with multi-specification or in small batches,in a flexible production system.
文摘Monte Carlo simulation was applied to Assembly Success Bate (ASK) analyses. ASR of two peg-in-hole robot assemblies was used as an example by taking component parts' sizes, manufacturing tolerances and robot repeatability into account. A statistic arithmetic expression was proposed and deduced in this paper, which offers an alternative method of estimating the accuracy of ASR, without having to repeat the simulations. This statistic method also helps to choose a suitable sample size, if error reduction is desired. Monte Carlo simulation results demonstrated the feasibility of the method.