The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gnei...The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite.展开更多
The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are ...The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are located near the contact between the greenstone belt and granitic massif. The evidence of lithium is in the form of clusters or disseminated and stockwerk. Mineralogical characteristics show similarities between the Air Massif pegmatites and indicate the same homogenous source during the magma-generation process. The pegmatite rocks attracted the attention due to their wide exposure and composition, well appearance, and economically hosting of significant rare earth metals such as Sn and W. The mineralogical and petrographical investigations on the eight pegmatites rocks samples observed have a relative similarity, while a little difference in the shapes attributed to the ratio in the pegmatite rocks of the minerals. The occurrence of the kink band indicates the influence of the tectonic processes which affected the Aïr massif after the emplacement of late magmatic or post-magmatic pegmatites by injection into fractured rocks in the upper part of the crust. The Air Massif pegmatite has higher concentrations Li and of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg of for the economic exploration.展开更多
The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater ...The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex(GHC),the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies.The dating analyses indicate that the U-Th-Pb ages of zircon,monazite,and xenotime exhibit large variations(38.6‒16.1 Ma),with the weighted average value of the four youngest points is 16.5±0.3 Ma,which indicates that the final stage of crystallization of the melt occurred in the Miocene.The age of the muscovite Ar-Ar inverse isochron is 15.2±0.4 Ma,which is slightly later than the intrusion age,showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma.TheεHf(t)values of the Cenozoic anatectic zircons cluster between−12 and−9 with an average of−11.4.The Gyirong pegmatite shows high contents of Si,Al,and K,a high Al saturation index,and low contents of Na,Ca,Fe,Mn,P,Mg,and Ti.Overall,the Gyirong pegmatite is enriched in Rb,Cs,U,K,Th and Pb and depleted in Nb,Ta,Zr,Ti,Eu,Sr,and Ba.The samples show a high 87Sr/86Sr(16 Ma)ratio of ca.0.762 and a lowεNd(16 Ma)value of−16.0.The calculated average initial values of 208Pb/204Pb(16 Ma),207Pb/204Pb(16 Ma)and 206Pb/204Pb(16 Ma)of the whole rock are 39.72,15.79 and 19.56,respectively.The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC.This study concludes that the Gyirong pegmatite represents a typical crustal‒derived anatectic pegmatite with low metallogenic potential for rare metals.The Gyirong pegmatite records the long‒term metamorphism and partial melting process of the GHC,and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma.展开更多
Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-...Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-bearing pegmatites.Therefore,remote-sensing techniques can be an effective means for prospecting Li-bearing pegmatites.In this study,the fault information and lithologyical information in the region were obtained using the median-resolution remotesensing image Landsat-8,the radar image Sentinel-1 and hyperspectral data GF-5.Using Landsat-8 data,the hydroxyl alteration information closely related to pegmatite in the region was extracted by principal component analysis,pseudoanomaly processing and other methods.The high spatial resolution remote-sensing data WorldView-2 and WorldView-3 short-wave infrared images were used and analyzed by principal component analysis(PCA),the band ratio method and multi-class machine learning(ML),combined with conventional thresholds specified the algorithms used to automatically extract Li-bearing pegmatite information.Finally,the Li-bearing pegmatite exploration area was determined,based on a comprehensive analysis of the faults,hydroxyl alteration lithology and Li-bearing pegmatite information.Field investigations have verified that the distribution of pegmatites in the central part of the study area is consistent with that of Li-bearing pegmatites extracted in this study.This study provides a new technique for prospecting Li-bearing pegmatites,which shows that remote-sensing technology possesses great potential for identifying lithium-bearing pegmatites,especially in areas that are not readily accessible.展开更多
Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we...Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.展开更多
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid wit...The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite.There are three distinguishable types of fluid inclusions:crystal-rich,CO2–NaCl–H2 O,and NaCl–H2 O.At more than 500°C and 350~480 MPa,crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage,characterized by a dense hydrous alkali borosilicate fluid with a carbonate component.Between 412°C and 278°C,CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I)and quartz(II)with a low salinity(3.3–11.9 wt%NaCl equivalent)and a high volatile content,which represent the boundary between the transition stage and the hydrothermal stage.The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C,have a low salinity(1.1–13.9 wt%NaCl equivalent).The various types of fluid inclusions reveal the P–T conditions of pegmatite formation,which marks the transition process from magmatic to hydrothermal.The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals,such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals.Therefore,this area has favorable conditions for lithium enrichment and excellent prospecting potential.展开更多
In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical me...In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical melt or fluid is a silicate phase in which volatiles; principally H_2O are completely miscible in all proportions at magmatic temperatures and pressures. This phase evolves from felsic melts and changes into hydrothermal fluids, and its unique properties are particularly important in sequestering and concentrating low abundance elements, such as metals. In our past research, we have focused on processes observed at upper crustal levels, however extensive work by us and other researchers have demonstrated that supercritical melt/fluids should be abundant in melting zones at deep-crustal levels too. We propose that these fluids may provide a connecting link between lower and upper crustal magmas,and a highly efficient transport mechanism for usually melt incompatible elements. In this paper, we explore the unique features of this fluid which allow the partitioning of variouselements and compounds, potentially up to extreme levels,and may explain various features both of mineralization and the magmas that produced them.展开更多
Fully-coupled thermo-mechanical simulations are implemented in COMSOL Multiphysics to investigate micro-scale stress-strain variability in pegmatite specimens subjected to thermal loading using microwaves. Thermally-i...Fully-coupled thermo-mechanical simulations are implemented in COMSOL Multiphysics to investigate micro-scale stress-strain variability in pegmatite specimens subjected to thermal loading using microwaves. Thermally-induced compressive and tensile stresses increase as the microwave irradiation duration increases. The dielectric constant, coefficient of expansion, and type and size of mineralogical boundary have significant impacts on the responses of the rock to microwave irradiation. The maximum principal stress of the chlorite is the smallest, indicating that the chlorite experiences the most damage under microwave irradiation, followed by the quartz. The maximum principal stress values of plagioclase and orthoclase are larger, indicating that they are likely to incur the least damage. Where quartz or chlorite is dominant, the resulting von Mises stresses are consistently higher after 120 s of microwave irradiation. The rate of generation of von Mises stresses increases most rapidly along the interface between quartz and plagioclase, and the interface between quartz and orthoclase, followed by the interface between quartz and chlorite, and finally the interface between plagioclase and orthoclase. The presented modeling approach provides a practical method to investigate stress-strain relationships within mineralogical boundaries inside a rock thin section.展开更多
Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,an...Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,and the major minerals are quartz(39.8%),K-feldspar(18.8%),albite(36.3%),muscovite(3.4%),and garnet(1.1%).Monazite U–Pb isotopic dating indicates that the No.5 pegmatite from the Eastern Qinling was emplaced at ca.420.2±2.2 Ma,which confirms that highpurity quartz mineralization probably formed during the Early Devonian.In-situ laser ablation inductively coupled plasma mass spectrometry analysis of quartz show that quartz samples from Eastern Qinling have total trace element concentrations(Al,Ti,Sc,Li,B,Cr,Mn,and Fe)ranging from 23.2 to 52.8 ppm,slightly higher than the quartz(impurity element content from 13.4 to 25.9 ppm)of the Spruce Pine high-purity quartz deposit in western North Carolina.The No.5 pegmatite of Eastern Qinling could be defined as one high-purity quartz deposit of China.展开更多
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less...The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.展开更多
Petrography and geochemistry of the altered and unaltered host rocks surrounding the Koktokay No.3 pegmatite revealed that the unaltered amphibolite is mainly composed of hornblende, plagioclase, and ilmenite.Beyond t...Petrography and geochemistry of the altered and unaltered host rocks surrounding the Koktokay No.3 pegmatite revealed that the unaltered amphibolite is mainly composed of hornblende, plagioclase, and ilmenite.Beyond these primary components, the altered host rocks contain a few newly formed minerals, including biotite,tourmaline, chlorine, and muscovite. The alteration zone surrounding the Koktokay No.3 pegmatite is limited to 2.0 m, characterized by biotitization, tourmalization, and chloritization. In the altered host rocks, the contents of SiO2, MgO, MnO, Na2O, and TiO2 did not vary greatly.However, Al2O3 showed a weak decreasing trend with the increasing distance from the pegmatite contact zone, while Fe2O3 and CaO showed an increasing trend. The contents of Li, Rb, and Cs in the altered host rocks were much higher than those in the unaltered host rocks, decreasing with distance from the contact. The chondrite-normalized rare earth element(REE) pattern of the altered and unaltered host rock was right-inclined from La to Lu, but enriched in light REEs over heavy REEs after hydrothermal alteration. An isocon plot shows that some oxides migrated in with an order of P2O5〉K2O 〉TiO2〉Al2O3〉SiO2〉MnO≥MgO, while others migrated out with an order of Na2O 〉CaO 〉Fe2O3. For REEs, the migration ratios are positive values withCs 〉Rb 〉Li 〉Nb 〉Ta 〉Be, signifying that all REEs migrated from the exsolved magmatic fluid into the altered host rocks. It was concluded that diffusion was the only mechanism for migration of ore-forming elements in the alteration zone. The effective diffusion coefficients(Deff)of LiF, RbF, and CsF were estimated under a fluid temperature of 500–550℃. Using a function of concentration(C(x,t)) and distance(x), the order of migration distance was determined to be LiF 〉CsF 〉RbF, with diffusion times of (3.39 ± 0.35)× 10^6,(3.19 ± 0.28) × 10^5 and(6.33 ± 0.05) × 10^5 years, respectively.展开更多
Remote sensing technique plays an important role in geological prospecting in Altay because of the remote location and steep terrain with mountains. Pegmatite has important implications for metallogenic prospecting as...Remote sensing technique plays an important role in geological prospecting in Altay because of the remote location and steep terrain with mountains. Pegmatite has important implications for metallogenic prospecting as most of rare metals occurs in it. Pegmatite information from optical and radar images was extracted, and the spatial distribution and scale of pegmatite were generalized in Azubai, Altay. Three mining targets, that is, Halon-Azubai, Kuermutu-Tuyibaguo and Zhuolute-Akuoyige, were delineated based on the analysis of pegmatite information, structure interpretation and other geological data.展开更多
1.Objectives Keeryin rare metal ore district is located at the intersection of Markam,Jinchuan and Rangtang counties.More than 1000 pegmatite dykes are associated with the Keeryin granite pluton.These pegmafite dykes ...1.Objectives Keeryin rare metal ore district is located at the intersection of Markam,Jinchuan and Rangtang counties.More than 1000 pegmatite dykes are associated with the Keeryin granite pluton.These pegmafite dykes are the major source of industrial spodumene ore bodies.Based on the previous studies,we chose Keeryin rare metal ore district as the key target area for geology survey.In this study,we discovered six pegmatite lithium veins in the Sizemuzu district of the Keeryin.Moreover,we study the distribution of regional ore deposits and metallogeny,delineate prospecting target and evaluate the mineralization potential of Lithium.展开更多
This article is investigating analysis and chemical composition of ceramic pegmatite minerals obtained from the Terek deposit in Toktogul district of Kyrgyzstan. Several methods such as mineralogical studies, magnetic...This article is investigating analysis and chemical composition of ceramic pegmatite minerals obtained from the Terek deposit in Toktogul district of Kyrgyzstan. Several methods such as mineralogical studies, magnetic and gravitational enrichments, silicate and chemical analyses of ceramic pegmatite minerals, quartz-feldspathic concentrate and sludge removal have been performed for determination of pegmatite mineral applicability for production of porcelain and earthenware.展开更多
In the Kenticha area,a series of barren to rare metal-bearing pegmatites intruded into the Neoproterozoic Adola Belt.The pegmatites host world-class Nb and Ta deposits and significant Li and Be reserves.In this contri...In the Kenticha area,a series of barren to rare metal-bearing pegmatites intruded into the Neoproterozoic Adola Belt.The pegmatites host world-class Nb and Ta deposits and significant Li and Be reserves.In this contribution,fluid inclusion data and feldspar geothermometry have been combined to define the crystallization condition of the Kenticha rare-metal pegmatite.Primary and complex assemblages of secondary fluid inclusions representing episodic fluid circulations have been identified in quartz and spodumene.A primary aqueous-carbonic fluid of low salinity aqueous solution with liquid and vapour CO_(2) phases,secondary carbonic fluid rich and carboniconly fluids,and multiple generations of secondary aqueous inclusions that represent sub-solidus hydrothermal circulation have been identified.All aqueous inclusions were homogenized into the liquid phase between 100 and 290℃.Aqueous-carbonic inclusions were homogenized,usually via a critical transition[T_(h)(LV→SCF)]between 241 and 397℃,or less commonly,via a dew-point transition[T_(h)(LV→V)]between 213 and 264℃.Crystallization of the rare-element pegmatite is certainly associated with the late-stage magmatic or early hydrothermal low-salinity aqueous-carbonic fluid that homogenizes to critical conditions.A combination of microthermometric data and existing experimentally determined solidus from flux and volatile bearing haplogranite suggests exsolution of fluids from hydrous silicate melt,perhaps during crystallization of the aplitic layer.The fluids were then trapped and isobarically cooled along a reasonable geothermal gradient within the pegmatite unit down to a temperature of around 397℃.展开更多
The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape st...The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape structure. Amphibolite facies pelitic metasedimentary windows crop out in the axial parts of the HSZ and are noticeably associated with numerous N-trending pegmatite dikes. Whole-rock geochemistry of the pegmatites reveals a peraluminous(S-type) affinity, with low K/Rb ratios and elevated concentrations of U, Th, REE, Rb, Li, Cs, Y, Nb and Ta. Structurally, the pegmatite sets intrude along the shear plane of the HSZ, corresponding to the regional N-trending tectonic fabrics, such as axial planar foliation and dextral-shearing in the metasedimentary host rock. Field relationships, including structural context, coupled with geochemical characteristics of the Wadi Ibib pegmatites, do not support their formation as a complementary part of evolved granitic magmas. Space-localized decompression-induced partial melting of peraluminous garnet-bearing metapelites was alternatively the underlying process for formation of these pegmatites. Such decompression was associated with regional escape tectonics and stress axes permutations during the late deformation stage(D3) in the evolution of the south Eastern Desert terrane, due to end-orogeny system pressure-release.展开更多
The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masse...The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.展开更多
This work reviews the geology, geochemistry and geochronology and discusses the spatial and temporal relationship of the granite pegmatite and the rare metal mineralization of the Kenticha granite pegmatite, southern ...This work reviews the geology, geochemistry and geochronology and discusses the spatial and temporal relationship of the granite pegmatite and the rare metal mineralization of the Kenticha granite pegmatite, southern Ethiopia using published and unpublished works to give a comprehensive understanding about the formation of the mineral deposit. The Kenticha rare metal pegmatite belt comprises several groups of pegmatites which show a high magmatic fractionation, regional and compositional zoning, mineralogical assemblage, and secondary alterations. The internal zonation shows high degree of evolution from the border to the core zone during crystallization and solidification of the leucogranitic to pegmatitic melt. Tantalum mineralization at Kenticha includes zoned tantalite-(Mn) and columbite-(Mn), as well as microlite, pyrochlore, uranmicrolite, and rare tapiolite, ixiolite/wodginite and Ta-bearing rutile. The tectonic setting of the Kenticha granite pegmatite in the Within Plate Granite (WPG) to syn-Collisional Granite (syn-COLG) granite and probably sourced from extreme fractionation of syn-to late tectonic granites or anatexis process of the metasedimentary rocks in the area. The emplacement of the Kenticha pegmatite was at ca. 530 Ma and temporally related to the post-collisional phase of granitic magmatism at 570 - 520 Ma, after the last tectonic stage of east African orogeny during the late stage of Gondwana assembly.展开更多
The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously cont...The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously controlled by the fold system.There exists apparent in jectionrelationship between the pegmatites and the surrounding Sinian schist and granulitite.The granitoidsextensively distributed in the field belong either to the Variscan or to the Yenshanian cycle,and it is evidentthat the pegmatites are genetically related to Variscan migmatitic granites. The pegmatites can be grouped into four types:muscovite-orthoclase-albite pegmatite(I).muscovitedlbite-orthoclase pegmatite(Ⅱ),muscovite-orthoclase-albite pegmatite(Ⅲ),and muscovite-albitespodumene pegmatite(IV).Owing to strong metasomatism and multi-stage emplacement of pegmatitic meltsolution,the sequence of interior assemblage zones in the pegmatites does not always represent the sequenceof original crystallization. The mineral composition of the pegmatites is extremely complicated.81 kinds of minerals have so farbeen found、From type I to type IV,the mineral assemblage tend to get increasingly complex.together withthe synchronous intensification of rare-metal and Sn mineralizations.Most of the type-IV pegmatites are ofeconomic value The features of fluid inclusions in the minerals are significantly different not only in different typos ofpegmatite,but also in different parts of a single pegmatite vein.Theδ18O values of migmatitic granite andpegmatites are comparatively low(9.3-10.4‰),and those of rock-forming fluids are higher than 9.5‰ Isotopic ages of the pegmatites brangs from 235 to 328 Ma with initial 87Sr/86Sr ratios being ”.715-0.746. According to the temporal and spatial relationships between the pegmatites and the migmatitic granitecombined with the features of the pegmatites themselves,it can be concluded that the Xikeng pegmatites arethe product of differentiation closely related to the migmatitic granite.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金The study was conducted within the framework of the state task(topic ID 0350-2019-0007)and supported by grant 20-55-44002-Mong_a of the Russian Foundation for Basic Research.
文摘The detailed description of two granite complexes in the Olkhon subterrane is given.The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series.It includes migmatites,granite-gneisses,granites and pegmatites of normal alkalinity;they belong to the type of syncollisional granites.The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites.They have elevated alkalinity,low of Ba,Sr,and high LILE and HFSE elements contents.The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume.These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting.Two geochemical types are distinguished among the pegmatites of this complex.These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization(the Ilixin vein).The Tashkiney pegmatite vein is similar to Ilixin,but lies in the gneisses of the Olkhon series.It shows high concentrations of Be,Nb,Ta,as well as W,Sn,but lacks Li and F,due to a greater depth and higher temperature of the melt crystallization of this pegmatite.
文摘The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are located near the contact between the greenstone belt and granitic massif. The evidence of lithium is in the form of clusters or disseminated and stockwerk. Mineralogical characteristics show similarities between the Air Massif pegmatites and indicate the same homogenous source during the magma-generation process. The pegmatite rocks attracted the attention due to their wide exposure and composition, well appearance, and economically hosting of significant rare earth metals such as Sn and W. The mineralogical and petrographical investigations on the eight pegmatites rocks samples observed have a relative similarity, while a little difference in the shapes attributed to the ratio in the pegmatite rocks of the minerals. The occurrence of the kink band indicates the influence of the tectonic processes which affected the Aïr massif after the emplacement of late magmatic or post-magmatic pegmatites by injection into fractured rocks in the upper part of the crust. The Air Massif pegmatite has higher concentrations Li and of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg of for the economic exploration.
基金sponsored by the National Key R&D Programme of China(2021YFC2901803)National Natural Science Foundation of China(92055314 and 41802095)+2 种基金the China Geological Survey(DD20230049 and DD20220983)is a contribution to the International Geoscience Programme(IGCP-741)Academician Bao-jun Liu Foundation of Southwest Geological Science and Technology Innovation Center.
文摘The Cenozoic Himalayan leucogranite-pegmatite belt has been a hotspot for rare metal exploration in recent years.To determine the genesis of the pegmatite in the Himalayan region and its relationship with the Greater Himalayan Crystalline Complex(GHC),the Gyirong pegmatite in southern Tibet was chosen for geochronological and geochemical studies.The dating analyses indicate that the U-Th-Pb ages of zircon,monazite,and xenotime exhibit large variations(38.6‒16.1 Ma),with the weighted average value of the four youngest points is 16.5±0.3 Ma,which indicates that the final stage of crystallization of the melt occurred in the Miocene.The age of the muscovite Ar-Ar inverse isochron is 15.2±0.4 Ma,which is slightly later than the intrusion age,showing that a cooling process associated with rapid denudation occurred at 16‒15 Ma.TheεHf(t)values of the Cenozoic anatectic zircons cluster between−12 and−9 with an average of−11.4.The Gyirong pegmatite shows high contents of Si,Al,and K,a high Al saturation index,and low contents of Na,Ca,Fe,Mn,P,Mg,and Ti.Overall,the Gyirong pegmatite is enriched in Rb,Cs,U,K,Th and Pb and depleted in Nb,Ta,Zr,Ti,Eu,Sr,and Ba.The samples show a high 87Sr/86Sr(16 Ma)ratio of ca.0.762 and a lowεNd(16 Ma)value of−16.0.The calculated average initial values of 208Pb/204Pb(16 Ma),207Pb/204Pb(16 Ma)and 206Pb/204Pb(16 Ma)of the whole rock are 39.72,15.79 and 19.56,respectively.The Sr-Nd-Pb-Hf isotopic characteristics of the Gyirong pegmatite are consistent with those of the GHC.This study concludes that the Gyirong pegmatite represents a typical crustal‒derived anatectic pegmatite with low metallogenic potential for rare metals.The Gyirong pegmatite records the long‒term metamorphism and partial melting process of the GHC,and reflects the crustal thickening caused by thrust compression at 39‒29 Ma and the crustal thinning induced by extensional decompression during 28‒15 Ma.
基金supported by the National Key Research and Development Program of the China Geological Survey(DD20190173)the Fundamental Research Funds for the Institute of Mineral Resources,the Chinese Academy of Geological Sciences(KK2102)+1 种基金the National Natural Science Foundation of China(42172332)the Chinese Geological Survey Project(DD20190379)。
文摘Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-bearing pegmatites.Therefore,remote-sensing techniques can be an effective means for prospecting Li-bearing pegmatites.In this study,the fault information and lithologyical information in the region were obtained using the median-resolution remotesensing image Landsat-8,the radar image Sentinel-1 and hyperspectral data GF-5.Using Landsat-8 data,the hydroxyl alteration information closely related to pegmatite in the region was extracted by principal component analysis,pseudoanomaly processing and other methods.The high spatial resolution remote-sensing data WorldView-2 and WorldView-3 short-wave infrared images were used and analyzed by principal component analysis(PCA),the band ratio method and multi-class machine learning(ML),combined with conventional thresholds specified the algorithms used to automatically extract Li-bearing pegmatite information.Finally,the Li-bearing pegmatite exploration area was determined,based on a comprehensive analysis of the faults,hydroxyl alteration lithology and Li-bearing pegmatite information.Field investigations have verified that the distribution of pegmatites in the central part of the study area is consistent with that of Li-bearing pegmatites extracted in this study.This study provides a new technique for prospecting Li-bearing pegmatites,which shows that remote-sensing technology possesses great potential for identifying lithium-bearing pegmatites,especially in areas that are not readily accessible.
基金supported by grants from the National Natural Science Foundation of China (40702014)the China Postdoctoral Science Foundation (2008044018,200902580)+1 种基金the Chinese SinoProbe Project (SinoProbe-03-01)the National Nonprofit Institute Research Grant of IMR,GAGS(K1001)
文摘Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.
基金funded by the National Natural Science Foundation of China(No.41703048,41872096)the Chinese National Nonprofit Institute Research Grant of CAGS,CGS(YYWF201520,JYYWF201814)the China Geological Survey(DD20160055,DD20190173)
文摘The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite.There are three distinguishable types of fluid inclusions:crystal-rich,CO2–NaCl–H2 O,and NaCl–H2 O.At more than 500°C and 350~480 MPa,crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage,characterized by a dense hydrous alkali borosilicate fluid with a carbonate component.Between 412°C and 278°C,CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I)and quartz(II)with a low salinity(3.3–11.9 wt%NaCl equivalent)and a high volatile content,which represent the boundary between the transition stage and the hydrothermal stage.The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C,have a low salinity(1.1–13.9 wt%NaCl equivalent).The various types of fluid inclusions reveal the P–T conditions of pegmatite formation,which marks the transition process from magmatic to hydrothermal.The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals,such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals.Therefore,this area has favorable conditions for lithium enrichment and excellent prospecting potential.
文摘In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical melt or fluid is a silicate phase in which volatiles; principally H_2O are completely miscible in all proportions at magmatic temperatures and pressures. This phase evolves from felsic melts and changes into hydrothermal fluids, and its unique properties are particularly important in sequestering and concentrating low abundance elements, such as metals. In our past research, we have focused on processes observed at upper crustal levels, however extensive work by us and other researchers have demonstrated that supercritical melt/fluids should be abundant in melting zones at deep-crustal levels too. We propose that these fluids may provide a connecting link between lower and upper crustal magmas,and a highly efficient transport mechanism for usually melt incompatible elements. In this paper, we explore the unique features of this fluid which allow the partitioning of variouselements and compounds, potentially up to extreme levels,and may explain various features both of mineralization and the magmas that produced them.
基金supported by the US National Science Foundation (CMMI award 1550307)the China Scholarship Council for financial support as a visiting scholar at the Colorado School of Mines (Grant No. 201706375077)
文摘Fully-coupled thermo-mechanical simulations are implemented in COMSOL Multiphysics to investigate micro-scale stress-strain variability in pegmatite specimens subjected to thermal loading using microwaves. Thermally-induced compressive and tensile stresses increase as the microwave irradiation duration increases. The dielectric constant, coefficient of expansion, and type and size of mineralogical boundary have significant impacts on the responses of the rock to microwave irradiation. The maximum principal stress of the chlorite is the smallest, indicating that the chlorite experiences the most damage under microwave irradiation, followed by the quartz. The maximum principal stress values of plagioclase and orthoclase are larger, indicating that they are likely to incur the least damage. Where quartz or chlorite is dominant, the resulting von Mises stresses are consistently higher after 120 s of microwave irradiation. The rate of generation of von Mises stresses increases most rapidly along the interface between quartz and plagioclase, and the interface between quartz and orthoclase, followed by the interface between quartz and chlorite, and finally the interface between plagioclase and orthoclase. The presented modeling approach provides a practical method to investigate stress-strain relationships within mineralogical boundaries inside a rock thin section.
基金the National Natural Science Foundation of China(42062006 and 41962007)the National Key Research and Development Program of China(2016YFC0600207)+1 种基金the Project of China Geological Survey(DD20190186 and 12120114034501)the science and technology research project of Jiangxi Provincial Department of Education(GJJ190379)。
文摘Eastern Qinling,China is one of the important rare metal metallogenic provinces with extensively distributed granite pegmatite dikes.The No.5 granite pegmatite intruded into the granitic gneiss of the Qinling Group,and the major minerals are quartz(39.8%),K-feldspar(18.8%),albite(36.3%),muscovite(3.4%),and garnet(1.1%).Monazite U–Pb isotopic dating indicates that the No.5 pegmatite from the Eastern Qinling was emplaced at ca.420.2±2.2 Ma,which confirms that highpurity quartz mineralization probably formed during the Early Devonian.In-situ laser ablation inductively coupled plasma mass spectrometry analysis of quartz show that quartz samples from Eastern Qinling have total trace element concentrations(Al,Ti,Sc,Li,B,Cr,Mn,and Fe)ranging from 23.2 to 52.8 ppm,slightly higher than the quartz(impurity element content from 13.4 to 25.9 ppm)of the Spruce Pine high-purity quartz deposit in western North Carolina.The No.5 pegmatite of Eastern Qinling could be defined as one high-purity quartz deposit of China.
基金financially supported by the State Basic Research Plan(973 project)(No.2011CB403100)IGCP/SIDA-600 project
文摘The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.
基金supported jointly by the Natural Science Foundation of China (Grant No.41372104)Research Project of Xinjiang Nonferrous Metals Industry (Group) Co.,Ltd.(Grant No.YSKY2011-02)
文摘Petrography and geochemistry of the altered and unaltered host rocks surrounding the Koktokay No.3 pegmatite revealed that the unaltered amphibolite is mainly composed of hornblende, plagioclase, and ilmenite.Beyond these primary components, the altered host rocks contain a few newly formed minerals, including biotite,tourmaline, chlorine, and muscovite. The alteration zone surrounding the Koktokay No.3 pegmatite is limited to 2.0 m, characterized by biotitization, tourmalization, and chloritization. In the altered host rocks, the contents of SiO2, MgO, MnO, Na2O, and TiO2 did not vary greatly.However, Al2O3 showed a weak decreasing trend with the increasing distance from the pegmatite contact zone, while Fe2O3 and CaO showed an increasing trend. The contents of Li, Rb, and Cs in the altered host rocks were much higher than those in the unaltered host rocks, decreasing with distance from the contact. The chondrite-normalized rare earth element(REE) pattern of the altered and unaltered host rock was right-inclined from La to Lu, but enriched in light REEs over heavy REEs after hydrothermal alteration. An isocon plot shows that some oxides migrated in with an order of P2O5〉K2O 〉TiO2〉Al2O3〉SiO2〉MnO≥MgO, while others migrated out with an order of Na2O 〉CaO 〉Fe2O3. For REEs, the migration ratios are positive values withCs 〉Rb 〉Li 〉Nb 〉Ta 〉Be, signifying that all REEs migrated from the exsolved magmatic fluid into the altered host rocks. It was concluded that diffusion was the only mechanism for migration of ore-forming elements in the alteration zone. The effective diffusion coefficients(Deff)of LiF, RbF, and CsF were estimated under a fluid temperature of 500–550℃. Using a function of concentration(C(x,t)) and distance(x), the order of migration distance was determined to be LiF 〉CsF 〉RbF, with diffusion times of (3.39 ± 0.35)× 10^6,(3.19 ± 0.28) × 10^5 and(6.33 ± 0.05) × 10^5 years, respectively.
基金Project(11JJ6029)supported by Natural Science Foundation of Hunan Province,ChinaProject(2011QNZT006)supported by Fundamental Research Funds for the Central Universities,China
文摘Remote sensing technique plays an important role in geological prospecting in Altay because of the remote location and steep terrain with mountains. Pegmatite has important implications for metallogenic prospecting as most of rare metals occurs in it. Pegmatite information from optical and radar images was extracted, and the spatial distribution and scale of pegmatite were generalized in Azubai, Altay. Three mining targets, that is, Halon-Azubai, Kuermutu-Tuyibaguo and Zhuolute-Akuoyige, were delineated based on the analysis of pegmatite information, structure interpretation and other geological data.
文摘1.Objectives Keeryin rare metal ore district is located at the intersection of Markam,Jinchuan and Rangtang counties.More than 1000 pegmatite dykes are associated with the Keeryin granite pluton.These pegmafite dykes are the major source of industrial spodumene ore bodies.Based on the previous studies,we chose Keeryin rare metal ore district as the key target area for geology survey.In this study,we discovered six pegmatite lithium veins in the Sizemuzu district of the Keeryin.Moreover,we study the distribution of regional ore deposits and metallogeny,delineate prospecting target and evaluate the mineralization potential of Lithium.
文摘This article is investigating analysis and chemical composition of ceramic pegmatite minerals obtained from the Terek deposit in Toktogul district of Kyrgyzstan. Several methods such as mineralogical studies, magnetic and gravitational enrichments, silicate and chemical analyses of ceramic pegmatite minerals, quartz-feldspathic concentrate and sludge removal have been performed for determination of pegmatite mineral applicability for production of porcelain and earthenware.
文摘In the Kenticha area,a series of barren to rare metal-bearing pegmatites intruded into the Neoproterozoic Adola Belt.The pegmatites host world-class Nb and Ta deposits and significant Li and Be reserves.In this contribution,fluid inclusion data and feldspar geothermometry have been combined to define the crystallization condition of the Kenticha rare-metal pegmatite.Primary and complex assemblages of secondary fluid inclusions representing episodic fluid circulations have been identified in quartz and spodumene.A primary aqueous-carbonic fluid of low salinity aqueous solution with liquid and vapour CO_(2) phases,secondary carbonic fluid rich and carboniconly fluids,and multiple generations of secondary aqueous inclusions that represent sub-solidus hydrothermal circulation have been identified.All aqueous inclusions were homogenized into the liquid phase between 100 and 290℃.Aqueous-carbonic inclusions were homogenized,usually via a critical transition[T_(h)(LV→SCF)]between 241 and 397℃,or less commonly,via a dew-point transition[T_(h)(LV→V)]between 213 and 264℃.Crystallization of the rare-element pegmatite is certainly associated with the late-stage magmatic or early hydrothermal low-salinity aqueous-carbonic fluid that homogenizes to critical conditions.A combination of microthermometric data and existing experimentally determined solidus from flux and volatile bearing haplogranite suggests exsolution of fluids from hydrous silicate melt,perhaps during crystallization of the aplitic layer.The fluids were then trapped and isobarically cooled along a reasonable geothermal gradient within the pegmatite unit down to a temperature of around 397℃.
基金supported by a research cooperation(Grant No.3TE1107T)between Kyushu University,Japan and the Egyptian Nuclear Materials Authority(NMA)。
文摘The Wadi Ibib area is situated in the northern part of the Neoproterozoic Hamisana Shear Zone(HSZ), which is a high strain zone evolved during the late stages of the Pan-African orogeny, likely as a tectonic escape structure. Amphibolite facies pelitic metasedimentary windows crop out in the axial parts of the HSZ and are noticeably associated with numerous N-trending pegmatite dikes. Whole-rock geochemistry of the pegmatites reveals a peraluminous(S-type) affinity, with low K/Rb ratios and elevated concentrations of U, Th, REE, Rb, Li, Cs, Y, Nb and Ta. Structurally, the pegmatite sets intrude along the shear plane of the HSZ, corresponding to the regional N-trending tectonic fabrics, such as axial planar foliation and dextral-shearing in the metasedimentary host rock. Field relationships, including structural context, coupled with geochemical characteristics of the Wadi Ibib pegmatites, do not support their formation as a complementary part of evolved granitic magmas. Space-localized decompression-induced partial melting of peraluminous garnet-bearing metapelites was alternatively the underlying process for formation of these pegmatites. Such decompression was associated with regional escape tectonics and stress axes permutations during the late deformation stage(D3) in the evolution of the south Eastern Desert terrane, due to end-orogeny system pressure-release.
文摘The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.
文摘This work reviews the geology, geochemistry and geochronology and discusses the spatial and temporal relationship of the granite pegmatite and the rare metal mineralization of the Kenticha granite pegmatite, southern Ethiopia using published and unpublished works to give a comprehensive understanding about the formation of the mineral deposit. The Kenticha rare metal pegmatite belt comprises several groups of pegmatites which show a high magmatic fractionation, regional and compositional zoning, mineralogical assemblage, and secondary alterations. The internal zonation shows high degree of evolution from the border to the core zone during crystallization and solidification of the leucogranitic to pegmatitic melt. Tantalum mineralization at Kenticha includes zoned tantalite-(Mn) and columbite-(Mn), as well as microlite, pyrochlore, uranmicrolite, and rare tapiolite, ixiolite/wodginite and Ta-bearing rutile. The tectonic setting of the Kenticha granite pegmatite in the Within Plate Granite (WPG) to syn-Collisional Granite (syn-COLG) granite and probably sourced from extreme fractionation of syn-to late tectonic granites or anatexis process of the metasedimentary rocks in the area. The emplacement of the Kenticha pegmatite was at ca. 530 Ma and temporally related to the post-collisional phase of granitic magmatism at 570 - 520 Ma, after the last tectonic stage of east African orogeny during the late stage of Gondwana assembly.
文摘The Xikeng pegmatite field lies on the eastern margin of the south China fold system in Fujian Province,and it is located at the junction of three major tectonic units. The distribution of pegmatites is obviously controlled by the fold system.There exists apparent in jectionrelationship between the pegmatites and the surrounding Sinian schist and granulitite.The granitoidsextensively distributed in the field belong either to the Variscan or to the Yenshanian cycle,and it is evidentthat the pegmatites are genetically related to Variscan migmatitic granites. The pegmatites can be grouped into four types:muscovite-orthoclase-albite pegmatite(I).muscovitedlbite-orthoclase pegmatite(Ⅱ),muscovite-orthoclase-albite pegmatite(Ⅲ),and muscovite-albitespodumene pegmatite(IV).Owing to strong metasomatism and multi-stage emplacement of pegmatitic meltsolution,the sequence of interior assemblage zones in the pegmatites does not always represent the sequenceof original crystallization. The mineral composition of the pegmatites is extremely complicated.81 kinds of minerals have so farbeen found、From type I to type IV,the mineral assemblage tend to get increasingly complex.together withthe synchronous intensification of rare-metal and Sn mineralizations.Most of the type-IV pegmatites are ofeconomic value The features of fluid inclusions in the minerals are significantly different not only in different typos ofpegmatite,but also in different parts of a single pegmatite vein.Theδ18O values of migmatitic granite andpegmatites are comparatively low(9.3-10.4‰),and those of rock-forming fluids are higher than 9.5‰ Isotopic ages of the pegmatites brangs from 235 to 328 Ma with initial 87Sr/86Sr ratios being ”.715-0.746. According to the temporal and spatial relationships between the pegmatites and the migmatitic granitecombined with the features of the pegmatites themselves,it can be concluded that the Xikeng pegmatites arethe product of differentiation closely related to the migmatitic granite.