The ef fects of salinity on the copepod, A cartia tonsa in terms of daily egg production rate(EPR), hatching success, fecal pellet production rate(FPR), naupliar development time and survival, sex ratio, and total lif...The ef fects of salinity on the copepod, A cartia tonsa in terms of daily egg production rate(EPR), hatching success, fecal pellet production rate(FPR), naupliar development time and survival, sex ratio, and total life span were determined in laboratory conditions through three experiments. In experiment 1, EPR, hatching success, and FPR of individual females were monitored at salinities of 13, 20, 35 and 45 during short-periods(seven consecutive days). Results show EPR was aff ected by salinity with the highest outputs recorded at 20 and 35, respectively, which were considerably higher than those at 13 and 45. Mean FPR was also higher in 35 and 20. In experiment 2, the same parameters were evaluated over total life span of females(long-term study). The best EPR and FPR were observed in 35, which was statistically higher than at 13 and 20. In experiment 3, survival rates of early nauplii until adult stage were lowest at a salinity of 13. The development time increased with increasing of salinity. Female percentage clearly decreased with increasing salinity. Higher female percentages(56.7% and 52.2%, respectively) were signifi cantly observed at two salinities of 13 and 20 compared to that at 35(25%). Total longevity of females was not af fected by salinity increment. Based on our results, for mass culture we recommend that a salinity of 35 be adopted due to higher reproductive performances, better feeding, and faster development of A. tonsa.展开更多
The threat of increasing fuel prices and climate change necessitates the need for clean,renewable and independent energy sources.A GIS(Geographical Information Systems)model was developed using ArcGIS 9.2 to analyze t...The threat of increasing fuel prices and climate change necessitates the need for clean,renewable and independent energy sources.A GIS(Geographical Information Systems)model was developed using ArcGIS 9.2 to analyze the availability of non-woody biomass(wheat,oat,barley and rape straw,willow and miscanthus)for pellet production in Ireland.Utilization within the heating and electricity sector would displace currently used fossil fuels with cleaner,carbon neutral non-woody residues.The aim of the analysis was to determine the total hectares of biomass within Ireland and compute the potential non-woody biomass yield.The greatest potential source of biomass for pelleting is cereal straw.Within the Republic of Ireland the South-East,South-West and Mid-East of Ireland have the greatest biomass yield for pellet production and likely to be most economically viable.Non-woody biomass has a realistic potential to displace fossil fuels within the heating and electricity sector resulting in CO2 mitigation.展开更多
Copepod fecal pellets are ubiquitous throughout the oceans. Their production and export can represent a highly efficient pathway of carbon export. However, the role these fecal pellets play in carbon export in the Cha...Copepod fecal pellets are ubiquitous throughout the oceans. Their production and export can represent a highly efficient pathway of carbon export. However, the role these fecal pellets play in carbon export in the Changjiang(Yangtze) River estuary is not well known. Two cruises were carried out in the Changjiang estuary in the spring and summer of 2013, during which time carbon biomass, production, and export of copepod fecal pellets were studied. Spring and summer fecal pellet carbon biomass ranged 0.30–1.01 mg C/m^3(mean=0.56±0.20 mg C/m^3) and 0.31–1.18 mg C/m^3(mean=0.64±0.24 mg C/m^3), respectively, significantly lower than phytoplankton. At most stations, fecal pellet carbon biomass was higher in surface or subsurface layers than deeper layers. Production rates ranged 0.65–1.49 pellets/(ind.?h)(mean=1.02±0.27 pellets/(ind.?h)) in spring and 0.62–1.34 pellets/(ind.?h)(mean=0.98±0.22 pellets/(ind.?h)) in summer, within the range reported in previous studies. Higher production rates of fecal pellets occurred at stations with higher chlorophyll a concentrations, and production rates of copepods of size 500–1 000 μm greater than copepods >1 000 μm during both cruises. The potential export flux of fecal pellets was slightly higher in summer(mean=68.95±14.37 mg C/(m^2 ?d)) than spring(mean=52.08±11.33 mg C/(m^2 ?d)) owing to higher summer copepod abundances. To our knowledge, this study is the first of its kind in the Changjiang estuary, and it confirms the significant role of copepod fecal pellets in local carbon export.展开更多
文摘The ef fects of salinity on the copepod, A cartia tonsa in terms of daily egg production rate(EPR), hatching success, fecal pellet production rate(FPR), naupliar development time and survival, sex ratio, and total life span were determined in laboratory conditions through three experiments. In experiment 1, EPR, hatching success, and FPR of individual females were monitored at salinities of 13, 20, 35 and 45 during short-periods(seven consecutive days). Results show EPR was aff ected by salinity with the highest outputs recorded at 20 and 35, respectively, which were considerably higher than those at 13 and 45. Mean FPR was also higher in 35 and 20. In experiment 2, the same parameters were evaluated over total life span of females(long-term study). The best EPR and FPR were observed in 35, which was statistically higher than at 13 and 20. In experiment 3, survival rates of early nauplii until adult stage were lowest at a salinity of 13. The development time increased with increasing of salinity. Female percentage clearly decreased with increasing salinity. Higher female percentages(56.7% and 52.2%, respectively) were signifi cantly observed at two salinities of 13 and 20 compared to that at 35(25%). Total longevity of females was not af fected by salinity increment. Based on our results, for mass culture we recommend that a salinity of 35 be adopted due to higher reproductive performances, better feeding, and faster development of A. tonsa.
文摘The threat of increasing fuel prices and climate change necessitates the need for clean,renewable and independent energy sources.A GIS(Geographical Information Systems)model was developed using ArcGIS 9.2 to analyze the availability of non-woody biomass(wheat,oat,barley and rape straw,willow and miscanthus)for pellet production in Ireland.Utilization within the heating and electricity sector would displace currently used fossil fuels with cleaner,carbon neutral non-woody residues.The aim of the analysis was to determine the total hectares of biomass within Ireland and compute the potential non-woody biomass yield.The greatest potential source of biomass for pelleting is cereal straw.Within the Republic of Ireland the South-East,South-West and Mid-East of Ireland have the greatest biomass yield for pellet production and likely to be most economically viable.Non-woody biomass has a realistic potential to displace fossil fuels within the heating and electricity sector resulting in CO2 mitigation.
基金Supported by the Innovation Plan of Science and Technology for Ao Shan(No.2016ASKJ02)the National Basic Research Program of China(973 Program)(No.2014CB441504)+1 种基金the “Strategic Priority Research Program-Western Pacific Ocean System” of Chinese Academy of Sciences(No.XDA11030204)the National Natural Science Foundation of China(No.31700425)
文摘Copepod fecal pellets are ubiquitous throughout the oceans. Their production and export can represent a highly efficient pathway of carbon export. However, the role these fecal pellets play in carbon export in the Changjiang(Yangtze) River estuary is not well known. Two cruises were carried out in the Changjiang estuary in the spring and summer of 2013, during which time carbon biomass, production, and export of copepod fecal pellets were studied. Spring and summer fecal pellet carbon biomass ranged 0.30–1.01 mg C/m^3(mean=0.56±0.20 mg C/m^3) and 0.31–1.18 mg C/m^3(mean=0.64±0.24 mg C/m^3), respectively, significantly lower than phytoplankton. At most stations, fecal pellet carbon biomass was higher in surface or subsurface layers than deeper layers. Production rates ranged 0.65–1.49 pellets/(ind.?h)(mean=1.02±0.27 pellets/(ind.?h)) in spring and 0.62–1.34 pellets/(ind.?h)(mean=0.98±0.22 pellets/(ind.?h)) in summer, within the range reported in previous studies. Higher production rates of fecal pellets occurred at stations with higher chlorophyll a concentrations, and production rates of copepods of size 500–1 000 μm greater than copepods >1 000 μm during both cruises. The potential export flux of fecal pellets was slightly higher in summer(mean=68.95±14.37 mg C/(m^2 ?d)) than spring(mean=52.08±11.33 mg C/(m^2 ?d)) owing to higher summer copepod abundances. To our knowledge, this study is the first of its kind in the Changjiang estuary, and it confirms the significant role of copepod fecal pellets in local carbon export.